6,971 research outputs found

    Stochastic Multipath Model for the In-Room Radio Channel based on Room Electromagnetics

    Get PDF
    We propose a stochastic multipath model for the received signal for the case where the transmitter and receiver, both with directive antennas, are situated in the same rectangular room. This scenario is known to produce channel impulse responses with a gradual specular-to-diffused transition in delay. Mirror source theory predicts the arrival rate to be quadratic in delay, inversely proportional to room volume and proportional to the product of the antenna beam coverage fractions. We approximate the mirror source positions by a homogeneous spatial Poisson point process and their gain as complex random variables with the same second moment. The multipath delays in the resulting model form an inhomogeneous Poisson point process which enables derivation of the characteristic functional, power/kurtosis delay spectra, and the distribution of order statistics of the arrival delays in closed form. We find that the proposed model matches the mirror source model well in terms of power delay spectrum, kurtosis delay spectrum, order statistics, and prediction of mean delay and rms delay spread. The constant rate model, assumed in e.g. the Saleh-Valenzuela model, is unable to reproduce the same effects.Comment: 14 pages, Manuscript Submitted to IEEE Transaction on Antennas and Propagatio

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance

    Full text link
    Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level.Comment: 20 pages. This manuscript will appear in the IEEE Transactions on Wireless Communication

    Path-Loss Prediction for an Industrial Indoor Environment Based on Room Electromagnetics

    Get PDF

    Spatial Identification Methods and Systems for RFID Tags

    Get PDF
    DisertačnĂ­ prĂĄce je zaměƙena na metody a systĂ©my pro měƙenĂ­ vzdĂĄlenosti a lokalizaci RFID tagĆŻ pracujĂ­cĂ­ch v pĂĄsmu UHF. Úvod je věnovĂĄn popisu současnĂ©ho stavu vědeckĂ©ho poznĂĄnĂ­ v oblasti RFID prostorovĂ© identifikace a stručnĂ©mu shrnutĂ­ problematiky modelovĂĄnĂ­ a nĂĄvrhu prototypĆŻ těchto systĂ©mĆŻ. Po specifikaci cĂ­lĆŻ disertace pokračuje prĂĄce popisem teorie modelovĂĄnĂ­ degenerovanĂ©ho kanĂĄlu pro RFID komunikaci. Detailně jsou rozebrĂĄny metody měƙenĂ­ vzdĂĄlenosti a odhadu směru pƙíchodu signĂĄlu zaloĆŸenĂ© na zpracovĂĄnĂ­ fĂĄzovĂ© informace. Pro Ășčely lokalizace je navrĆŸeno několik scĂ©náƙƯ rozmĂ­stěnĂ­ antĂ©n. Modely degenerovanĂ©ho kanĂĄlu jsou simulovĂĄny v systĂ©mu MATLAB. VĂœznamnĂĄ část tĂ©to prĂĄce je věnovĂĄna konceptu softwarově definovanĂ©ho rĂĄdia (SDR) a specifikĆŻm jeho adaptace na UHF RFID, kterĂĄ vyuĆŸitĂ­ bÄ›ĆŸnĂœch SDR systĂ©mĆŻ značně omezujĂ­. DiskutovĂĄna je zejmĂ©na problematika prĆŻniku nosnĂ© vysĂ­lače do pƙijĂ­macĂ­ cesty a poĆŸadavky na signĂĄl lokĂĄlnĂ­ho oscilĂĄtoru pouĆŸĂ­vanĂœ pro směơovĂĄnĂ­. PrezentovĂĄny jsou tƙi vyvinutĂ© prototypy: experimentĂĄlnĂ­ dotazovač EXIN-1, měƙicĂ­ systĂ©m zaloĆŸenĂœ na platformě Ettus USRP a antĂ©nnĂ­ pƙepĂ­nacĂ­ matice pro emulaci SIMO systĂ©mu. ZĂĄvěrečnĂĄ část je zaměƙena na testovĂĄnĂ­ a zhodnocenĂ­ popisovanĂœch lokalizačnĂ­ch technik, zaloĆŸenĂœch na měƙenĂ­ komplexnĂ­ pƙenosovĂ© funkce RFID kanĂĄlu. Popisuje ĂșzkopĂĄsmovĂ©/ĆĄirokopĂĄsmovĂ© měƙenĂ­ vzdĂĄlenosti a metody odhadu směru signĂĄlu. Oba navrĆŸenĂ© scĂ©náƙe rozmĂ­stěnĂ­ antĂ©n jsou v zĂĄvěru ověƙeny lokalizačnĂ­m měƙenĂ­m v reĂĄlnĂœch podmĂ­nkĂĄch.The doctoral thesis is focused on methods and systems for ranging and localization of RFID tags operating in the UHF band. It begins with a description of the state of the art in the field of RFID positioning with short extension to the area of modeling and prototyping of such systems. After a brief specification of dissertation objectives, the thesis overviews the theory of degenerate channel modeling for RFID communication. Details are given about phase-based ranging and direction of arrival finding methods. Several antenna placement scenarios are proposed for localization purposes. The degenerate channel models are simulated in MATLAB. A significant part of the thesis is devoted to software defined radio (SDR) concept and its adaptation for UHF RFID operation, as it has its specialties which make the usage of standard SDR test equipment very disputable. Transmit carrier leakage into receiver path and requirements on local oscillator signals for mixing are discussed. The development of three experimental prototypes is also presented there: experimental interrogator EXIN-1, measurement system based on Ettus USRP platform, and antenna switching matrix for an emulation of SIMO system. The final part is focused on testing and evaluation of described positioning techniques based on complex backscatter channel transfer function measurement. Both narrowband/wideband ranging and direction of arrival methods are validated. Finally, both proposed antenna placement scenarios are evaluated with real-world measurements.

    A 3D pyramid network for short ranged high data rate communications at 60 GHz

    Get PDF
    • 

    corecore