642 research outputs found

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163

    Comparison of low-power wireless communication technologies for wearable health-monitoring applications

    Get PDF
    Health monitoring technologies such as Body Area Network (BAN) systems has gathered a lot of attention during the past few years. Largely encouraged by the rapid increase in the cost of healthcare services and driven by the latest technological advances in Micro-Electro-Mechanical Systems (MEMS) and wireless communications. BAN technology comprises of a network of body worn or implanted sensors that continuously capture and measure the vital parameters such as heart rate, blood pressure, glucose levels and movement. The collected data must be transferred to a local base station in order to be further processed. Thus, wireless connectivity plays a vital role in such systems. However, wireless connectivity comes at a cost of increased power usage, mainly due to the high energy consumption during data transmission. Unfortunately, battery-operated devices are unable to operate for ultra-long duration of time and are expected to be recharged or replaced once they run out of energy. This is not a simple task especially in the case of implanted devices such as pacemakers. Therefore, prolonging the network lifetime in BAN systems is one of the greatest challenges. In order to achieve this goal, BAN systems take advantage of low-power in-body and on-body/off-body wireless communication technologies. This paper compares some of the existing and emerging low-power communication protocols that can potentially be employed to support the rapid development and deployment of BAN systems

    Secure Intra-Body Wireless Communications (SIWiC) System Project

    Get PDF
    SIWiC System is a project to investigate, design and implement future wireless networks of implantable sensors in the body. This futuristic project is designed to make use of the emerging and yet-to-emerge technologies, including ultra-wide band (UWB) for wireless communications, smart implantable sensors, ultra low power networking protocols, security and privacy for bandwidth and power deficient devices and quantum computing. Progress in each of these fronts is hindered by the needs of breakthrough. But, as we will see in this paper, these major challenges are being met or will be met in near future. SIWiC system is a network of in-situ wireless devices that are implanted to coordinate sensed data inside the body, such as symptoms monitoring collected internally, or biometric data collected of an outside object from within the intra-body network. One node has the capability of communicating outside the body to send data or alarm to a relevant authority, e.g., a remote physician

    New Contact Sensorization Smart System for IoT e-Health Applications Based on IBC IEEE 802.15.6 Communications

    Full text link
    [EN] This paper proposes and demonstrates the capabilities of a new sensorization system that monitors skin contact between two persons. Based on the intrabody communication standard (802.15.6), the new system allows for interbody communication, through the transmission of messages between di erent persons through the skin when they are touching. The system not only detects if there has been contact between two persons but, as a novelty, is also able to identify the elements that have been in contact. This sensor will be applied to analyze and monitor good follow-up of hand hygiene practice in health care, following the ¿World Health Organization Guidelines on Hand Hygiene in Health Care¿. This guide proposes specific recommendations to improve hygiene practices and reduce the transmission of pathogenic microorganisms between patients and health-care workers (HCW). The transmission of nosocomial infections due to improper hand hygiene could be reduced with the aid of a monitoring system that would prevent HCWs from violating the protocol. The cutting-edge sensor proposed in this paper is a crucial innovation for the development of this automated hand hygiene monitoring system (AHHMS).This research was funded by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P.Hernández, D.; Ors Carot, R.; Capella Hernández, JV.; Bonastre Pina, AM.; Campelo Rivadulla, JC. (2020). New Contact Sensorization Smart System for IoT e-Health Applications Based on IBC IEEE 802.15.6 Communications. Sensors. 20(24):1-17. https://doi.org/10.3390/s20247097S117202
    corecore