63 research outputs found

    Subspace-based channel estimation for DS/CDMA systems exploiting pulse- shaping information.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.Third generation wireless systems have adopted Direct-Sequence/Code-Division Multiple-Access (DS/CDMA) as the multiple access scheme of communication. This system would typically operate in a multipath fading channel. This dissertation only deals with the task of channel estimation at the base station where the multipath delays and attenuations for each user are estimated. This information is used to aid the recovery of data that was transmitted by each user. Subspace-based algorithms are popularly used to perform the task of channel estimation because they have the desirable property of perfectly estimating the channel in a noise-free environment. In this dissertation a new subspace-based channel estimation algorithm for DS/CDMA systems is presented. The proposed algorithm is based on the Parametric Subspace algorithm by Perros-Meilhac et al. for single-user systems. The main focus of this dissertation is to convert the Parametric Subspace algorithm from a single-user system to a multi-user DS/CDMA system. It has been shown in the literature that by using information of the pulse-shaping filter in the Channel Subspace algorithm, the variance of the channel estimates is decreased. However, this has only been applied to a single-user system. There are several subspace algorithms that have been proposed for DS/CDMA systems. Most of these algorithms sample the received signal at the chip rate, making it impossible to exploit knowledge of the pulse-shaping filter in the channel estimation algorithm. In this dissertation a new subspace-based channel estimation algorithm is derived for a DS/CDMA system with multiple receive antennas, where the output is oversampled with respect to the chip rate. By oversampling the received signal, knowledge of the pulse-shaping filter is used in the channel estimation algorithm. It is shown that the variance of the channel estimate for the proposed subspace algorithm is less than the Torlak/Xu subspace algorithm that does not exploit information of the pulse-shaping filter. A mathematical expression of the mean square error of estimation for the new algorithm is also derived. It was shown that the analytic expression provides a good approximation of the actual MSE for high SNR. The Parametric Subspace Delay Estimation (PSDE) algorithm was developed by Perros-Meilhac et al. to estimate the multipath delays introduced by the communications channel. The limitation of the PSDE algorithm is that the performance of the algorithm deteriorates as the power of the multipath signals decrease with increasing delay time. This dissertation proposes a modified version of the PSDE algorithm, called the Modified Parametric Subspace Delay Estimation (MPSDE) algorithm, which performs better than the PSDE algorithm in an environment where the power of the multipath signals varies. The final part of this dissertation discusses the Torlak/Xu channel estimation algorithm and the Bensley/Aazbang delay estimation algorithm. In order to compare the performance of these two subspace algorithms, the Torlak/Xu algorithm is converted to a delay estimation algorithm that is called the Parametric TX algorithm. The performance of the Bensley/Aazbang delay estimation algorithm and the proposed Parametric TX algorithm are compared and it is shown that the Parametric TX algorithm offers the better performance

    Blind, MIMO system estimation based on PARAFAC decomposition of higher order output tensors

    Get PDF
    IEEE Transactions on Signal Processing, 54(11): pp. 4156-4168.We present a novel framework for the identification of a multiple-input multiple-output (MIMO) system driven by white, mutually independent unobservable inputs. Samples of the system frequency response are obtained based on parallel factorization (PARAFAC) of three- or four-way tensors constructed based on, respectively, third- or fourth-order cross spectra of the system outputs. The main difficulties in frequency-domain methods are frequency- dependent permutation and filtering ambiguities.We show that the information available in the higher order spectra allows for the ambiguities to be resolved up to a constant scaling and permutation ambiguities and a linear phase ambiguity. Important features of the proposed approach are that it does not require channel length information, needs no phase unwrapping, and unlike the majority of existing methods, needs no prewhitening of the system outputs

    Blind channel identification/equalization with applications in wireless communications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An intelligent-agent approach for managing congestion in W-CDMA networks

    Get PDF
    PhDResource Management is a crucial aspect in the next generation cellular networks since the use of W-CDMA technology gives an inherent flexibility in managing the system capacity. The concept of a “Service Level Agreement” (SLA) also plays a very important role as it is the means to guarantee the quality of service provided to the customers in response to the level of service to which they have subscribed. Hence there is a need to introduce effective SLA-based policies as part of the radio resource management. This work proposes the application of intelligent agents in SLA-based control in resource management, especially when congestion occurs. The work demonstrates the ability of intelligent agents in improving and maintaining the quality of service to meet the required SLA as the congestion occurs. A particularly novel aspect of this work is the use of learning (here Case Based Reasoning) to predict the control strategies to be imposed. As the system environment changes, the most suitable policy will be implemented. When congestion occurs, the system either proposes the solution by recalling from experience (if the event is similar to what has been previously solved) or recalculates the solution from its knowledge (if the event is new). With this approach, the system performance will be monitored at all times and a suitable policy can be immediately applied as the system environment changes, resulting in maintaining the system quality of service

    Journal of Telecommunications and Information Technology, 2001, nr 2

    Get PDF
    kwartalni

    Blind identification of possibly under-determined convolutive MIMO systems

    Get PDF
    Blind identi¯cation of a Linear Time Invariant (LTI) Multiple-Input Multiple-Output (MIMO) system is of great importance in many applications, such as speech processing, multi-access communication, multi-sensor sonar/radar systems, and biomedical applications. The objective of blind identi¯cation for a MIMO system is to identify an unknown system, driven by Ni unobservable inputs, based on the No system outputs. We ¯rst present a novel blind approach for the identi¯cation of a over-determined (No ž Ni) MIMO system driven by white, mutually independent unobservable inputs. Samples of the system frequency response are obtained based on Parallel Factorization (PARAFAC) of three- or four-way tensors constructed respectively based on third- or fourth-order cross-spectra of the system outputs. We show that the information available in the higher-order spectra allows for the system response to be identi¯ed up to a constant scaling and permutation ambiguities and a linear phase ambiguity. Important features of the proposed approaches are that they do not require channel length information, need no phase unwrapping, and unlike the majority of existing methods, need no pre-whitening of the system outputs.While several methods have been proposed to blindly identify over-determined convolutive MIMO systems, very scarce results exist for under-determined (No < Ni) case, all of which refer to systems that either have some special structure, or special No, Ni values. We propose a novel approach for blind identi¯cation of under-determined convolutive MIMO systems of general dimensions. As long as min(No;Ni) ž 2, we can always ¯nd the appropriate order of statistics that guarantees identi¯ability of the system response within trivial ambiguities. We provide the description of the class of identi¯able MIMO systems for a certain order of statistics K, and an algorithm to reach the solution.Finally we propose a novel approach for blind identi¯cation and symbol recovery of a distributed antenna system with multiple carrier-frequency oŸsets (CFO), arising due to mismatch between the oscillators of transmitters and receivers. The received base-band signal is over-sampled, and its polyphase components are used to formulate a virtual MIMO problem. By applying blind MIMO system estimation techniques, the system response is estimated and used to subsequently decouple the users and transform the multiple CFOs estimation problem into a set of independent single CFO estimation problems.Ph.D., Electrical Engineering -- Drexel University, 200

    Satellitenorbit und -ephemeridenbestimmung mit Hilfe von Intersatellitenverbindungen

    Get PDF
    Global navigation satellite systems like GPS, GLONASS or the future systems like Galileo require precise orbit and clock estimates in order to provide high positioning performance. Within the frame of this Ph. D. thesis, the theory of orbit determination and orbit computation is reviewed and a new approach for precise orbit and ephemeris determination using inter-satellite links is developed. To investigate the achievable accuracy, models of the various perturbing forces acting on a satellite have been elaborated and coded in a complex software package, allowing system level performance analysis as well as detailed evaluation of orbit prediction and orbit estimation algorithms. Several satellite constellations have been simulated, involving nearly all classes of orbit altitude and the results are compared. The purpose of orbit determination in a satellite navigation system is the derivation of ephemeris parameters which can be broadcast to the user community (or the other satellites) and allow easy computation of the satellites position at the desired epoch. The broadcast ephemeris model of both today existing satellite navigation systems, GPS and GLONASS are investigated, as well as two new models developed within this thesis, which are derivates of the GLONASS model. Furthermore, the topic of autonomous onboard processing is addressed. A conceptual design for an onboard orbit estimator is proposed and investigated with respect to the computational load. The algorithms have been implemented. The main benefits of ISL onboard processing, especially with respect to the great potential to ephemeris and clock state monitoring are investigated using complex simulations of failure scenarios. By simulating several types of non-integrity cases, it is showed that one single fault detection mechanism is likely to be insufficient. Within the algorithm design of the onboard processor, a reasonable combination of fault detection mechanisms is presented, covering different fault cases.Globale Navigationssysteme wie GPS, GLONASS oder zukĂŒnftige Systeme wie Galileo erfordern die hochprĂ€zise Bestimmung der Orbital- und Uhrenparameter, um hohe Navigationsgenauigkeit bieten zu können. Im Rahmen dieser Dissertation wurde die Theorie der OrbitprĂ€diktion und der Orbitbestimmung erörtert und ein neuer Ansatz fĂŒr die prĂ€zisen Orbitbestimmung mit Hilfe von Intersatelliten-Messungen entwickelt. Um die erreichbare Genauigkeit und PrĂ€zision der Orbitbestimmung zu untersuchen, wurden mathematische Modelle der zahlreiche Orbitstörungen erarbeitet und in einem komplexen Software-Paket implemetiert. Dieses bietet die Möglichkeit fĂŒr Systemstudien von Satellitennavigations-Systemen beliebiger Orbitklassen, sowie zur detaillierten Untersuchung spezieller Fragestellungen der OrbitprĂ€diktion und -bestimmung. Eine Reihe von Simulationen mit existierenden sowie fiktiven Satelliten-Navigations-Systemen wurden durchgefĂŒhrt, deren Ergebnisse in dieser Arbeit prĂ€sentiert werden. Die prĂ€zise Orbitbestimmung in einem SatNav-System ist kein Selbstzweck, sondern dient lediglich der Bestimmung der Ephemeridenparameter, die - vom Satellite gesendet - es dem Nutzer-EmpfĂ€nger erlauben, mit Hilfe einfacher Berechnungen die Position des Satelliten zu ermitteln. Die Ephemeridenformate beider existierender SatNav-Systeme - GPS und GLONASS - wurden untersucht und mit zwei weiteren Formaten verglichen, die im Rahmen dieser Arbeit entwickelt wurden. Desweiteren wurde das Thema der bordautonomen Verarbeitung von Messungen behandelt. Ein konzeptuelles Design fĂŒr einen Onboard-Prozessor wurde vorgeschlagen und die Algorithmen implementiert. Dabei erfolgte eine AbschĂ€tzung der benötigten Prozessorleistung. Einer der Hauptvorteile der bordautonomen Verarbeitung von Intersatellitenmessungen, die Möglichkeit zur Überwachung der IntegritĂ€t der Ephemeriden und Uhrenparameter, wurde in komplexen Simulationen untersucht. Durch die Simulation verschiedener FehlerfĂ€lle wurde gezeigt, das kein Detektionsmechanismus allein, wohl aber eine sinnvolle Kombination solcher Mechanismen, zur bordautonomen IntegritĂ€tsĂŒberwachung geeignet sind. Die Ergebissen werden hier prĂ€sentiert

    Application of advanced on-board processing concepts to future satellite communications systems

    Get PDF
    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Méthodes de codage et d'estimation adaptative appliquées aux communications sans fil

    Get PDF
    Les recherches et les contributions prĂ©sentĂ©es portent sur des techniques de traitement du signal appliquĂ©es aux communications sans fil. Elles s’articulent autour des points suivants : (1) l’estimation adaptative de canaux de communication dans diffĂ©rents contextes applicatifs, (2) la correction de bruit impulsionnel et la rĂ©duction du niveau de PAPR (Peak to Average Power Ratio) dans un systĂšme multi-porteuse, (3) l’optimisation de schĂ©mas de transmission pour la diffusion sur des canaux gaussiens avec/sans contrainte de sĂ©curitĂ©, (4) l’analyse, l’interprĂ©tation et l’amĂ©lioration des algorithmes de dĂ©codage itĂ©ratif par le biais de l’optimisation, de la thĂ©orie des jeux et des outils statistiques. L’accent est plus particuliĂšrement mis sur le dernier thĂšme
    • 

    corecore