1,662 research outputs found

    Two-stage Channel Frequency Response Estimation in OFDM Systems

    Get PDF
    This paper proposes two-stage channel frequency response estimation algorithm in communication systems with OFDM technology. Algorithm is based on Kalman filter. Pilots from current and previous OFDM symbols are used for channel estimation. At the first stage data is processed in time and frequency directions. Pilots from the current OFDM symbol are filtered and at the position, where the pilots from the previous OFDM symbols should be placed, predictions are made. Predictions are based on the pilots and channel correlation characteristics. The data processing carried out on both sides relative to the array of processed data in frequency direction and on one side at processing in time direction. The results of processing are optimally combined at the second stage. The autoregressive process was used as a channel model. The analysis of the developed algorithm carried out on a model example by statistical modeling. Modeling showed that application of designed algorithm allows reducing the standard deviation of the estimation error of channel frequency response. The efficiency of designed algorithm studied using Rayleigh channel with Doppler spectrum described by Jakes model. The autocorrelation characteristics of the channel were considered as known. Modeling showed a decrease in the probability of a bit error during reception using the proposed algorithm. It is also shown that an increase in the order of the autoregressive model reduces the error in estimating the frequency response of the communication channel

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    TS-MUWSN: Time synchronization for mobile underwater sensor networks

    Get PDF
    Time synchronization is an important, yet challenging, problem in underwater sensor networks (UWSNs). This challenge can be attributed to: 1) messaging timestamping; 2) node mobility; and 3) Doppler scale effect. To mitigate these problems, we present an acoustic-based time-synchronization algorithm for UWSN, where we compare several message time-stamping algorithms in addition to different Doppler scale estimators. A synchronization system is based on a bidirectional message exchange between a reference node and a slave one, which has to be synchronized. Therefore, we take as reference the DA-Sync-like protocol (Liu et al., 2014), which takes into account node's movement by using first-order kinematic equations, which refine Doppler scale factor estimation accuracy, and result in better synchronization performance. In our study, we propose to modify both time-stamping and Doppler scale estimation procedures. Besides simulation, we also perform real tests in controlled underwater communication in a water test tank and a shallow-water test in the Mediterranean Sea.Peer ReviewedPostprint (author's final draft

    Joint semi-blind detection and channel estimation in space-frequency trellis coded MIMO-OFDM

    Get PDF

    Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers

    Full text link
    We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demapper/decoder module outputs that cannot easily be removed by the traditional innovations approach. The proposed algorithm continuously monitors the quality of the feedback decisions and incorporates it in the channel estimation process. The proposed channel estimation scheme shows clear performance advantages relative to existing channel estimation techniques.Comment: 11 pages; IEEE Transactions on Communications 201
    corecore