3,592 research outputs found

    Channel estimation and symbol detection for block transmission using data-dependent superimposed training

    Get PDF
    We address the problem of frequency-selective channel estimation and symbol detection using superimposed training. The superimposed training consists of the sum of a known sequence and a data-dependent sequence that is unknown to the receiver. The data-dependent sequence cancels the effects of the unknown data on channel estimation. The performance of the proposed approach is shown to significantly outperform existing methods based on superimposed training (ST)

    A low complexity iterative channel estimation and equalisation scheme for (data-dependent) superimposed training

    Get PDF
    Channel estimation/symbol detection methods based on superimposed training (ST) are known to bemore bandwidth efficient than those based on traditional time-multiplexed training. In this paper we present an iterative version of the ST methodwhere the equalised symbols obtained via ST are used in a second step to improve the channel estimation, approaching the performance of the more recent (and improved) data dependent ST (DDST), but now with less complexity. This iterative ST method (IST) is then compared to a different iterative superimposed training method of Meng and Tugnait (LSST).We show via simulations that the BER of our IST algorithm is very close to that of the LSST but with a reduced computational burden of the order of the channel length. Furthermore, if the LSST iterative approach (originally based on ST) is now implemented using DDST, a faster convergence rate can be achieved for the MSE of the channel estimates

    Block synchronisation for joint channel and DC-offset estimation using data-dependent superimposed training

    Get PDF
    In this paper, we propose a new (single-step) block synchronisation algorithm for joint channel and DC-offset estimation for data-dependent superimposed training (DDST). While a (two-step) block synchronisation algorithm for DDST has previously been proposed in [5], due to interference from the information-bearing data it performed sub-optimally, resulting in channel estimates with unknown delays. These delay ambiguities (also present in the equaliser) were then estimated in [5] in a non-practical manner. In this paper we avoid the need for estimation of this delay ambiguity by exploiting the special structure of the channel output’s cyclic mean vector. The result is a BER performance superior to the DDST synchronisation algorithm first published in [5]

    Performance Analysis and Optimal Power Allocation for Linear Receivers Based on Superimposed Training

    Get PDF
    In this paper, we derive a performance comparison between two training-based schemes for Multiple-Input Multiple-Output (MIMO) systems. The two schemes are thetime-division multiplexing scheme and the recently proposed data-dependent superimposed pilot scheme. For both schemes, a closed-form expressions for the Bit Error Rate (BER) is provided. We also determine, for both schemes, the optimal allocation of power between pilot and data that minimizes the BER

    Joint detection and channel estimation for MIMO systems with SC-FDE modulations

    Get PDF
    SC modulation (Single-Carrier) with FDE (Frequency-Domain Equalization) allows excellent performance in severely time-dispersive channels, provided that accurate channel estimates are available at the receiver. For this purpose, pilot symbols and/or training sequences are usually multiplexed with data symbols, which lead to spectral degradation. As an alternative, we can use implicit pilots (i.e., pilots superimposed to data). In this paper we consider MIMO SC-FDE systems where the channel estimation is based on either explicit or implicit pilots, for comparison purposes. An iterative receiver with joint equalization, turbo decoding and channel estimation was employed for optimum results, and to reduce the high interference levels between data and pilots (for the implicit pilots). The main differences between the different schemes are discussed and the performance results show that the use of the proposed techniques for channel estimation yield excellent results.info:eu-repo/semantics/acceptedVersio

    Downlink Performance of Superimposed Pilots in Massive MIMO systems

    Full text link
    In this paper, we investigate the downlink throughput performance of a massive multiple-input multiple-output (MIMO) system that employs superimposed pilots for channel estimation. The component of downlink (DL) interference that results from transmitting data alongside pilots in the uplink (UL) is shown to decrease at a rate proportional to the square root of the number of antennas at the BS. The normalized mean-squared error (NMSE) of the channel estimate is compared with the Bayesian Cram\'{e}r-Rao lower bound that is derived for the system, and the former is also shown to diminish with increasing number of antennas at the base station (BS). Furthermore, we show that staggered pilots are a particular case of superimposed pilots and offer the downlink throughput of superimposed pilots while retaining the UL spectral and energy efficiency of regular pilots. We also extend the framework for designing a hybrid system, consisting of users that transmit either regular or superimposed pilots, to minimize both the UL and DL interference. The improved NMSE and DL rates of the channel estimator based on superimposed pilots are demonstrated by means of simulations.Comment: 28 single-column pages, 6 figures, 1 table, Submitted to IEEE Trans. Wireless Commun. in Aug 2017. Revised Submission in Feb. 201

    Partial-Data Superimposed Training with Data Precoding for OFDM Systems

    Get PDF
    Superimposed training (ST) is a recently addressed technique used for channel estimation where known training sequences are arithmetically added to data symbols, avoiding the use of dedicated pilot subcarriers, and thus, increasing the available bandwidth compared with traditional pilot symbol assisted modulation schemes. However, the system handles data interference over channel estimation as a result of the ST process; also, data detection is degraded by pilot interference. Recent ST methods have analyzed the data interference and presented schemes that deal with it. We propose a novel superimposed model over a precoded data scheme, named partial-data superimposed training (PDST), where an interference control factor assigns the adequate information level to be added to the training sequence in orthogonal frequency division multiplexing systems. Also, a data detection method is introduced to improve the symbol error rate performance. Moreover, a capacity analysis of the system has been derived. Finally, simulation results confirm that performance of PDST is superior to previous proposals

    Iterative synchronisation and DC-offset estimation using superimposed training

    Get PDF
    In this paper, we propose a new iterative approach for superimposed training (ST) that improves synchronisation, DC-offset estimation and channel estimation. While synchronisation algorithms for ST have previously been proposed in [2],[4] and [5], due to interference from the data they performed sub-optimally, resulting in channel estimates with unknown delays. These delay ambiguities (also present in the equaliser) were estimated in previous papers in a non-practical manner. In this paper we avoid the need for estimation of this delay ambiguity by iteratively removing the effect of the data “noise”. The result is a BER performance superior to all other ST algorithms that have not assumed a-priori synchronisation

    Superimposed training-based channel estimation and data detection for OFDM amplify-and-forward cooperative systems under high mobility

    Get PDF
    In this paper, joint channel estimation and data detection in orthogonal frequency division multiplexing (OFDM) amplify-and-forward (AF) cooperative systems under high mobility is investigated. Unlike previous works on cooperative systems in which a number of subcarriers are solely occupied by pilots, partial data-dependent superimposed training (PDDST) is considered here, thus preserving the spectral efficiency. First, a closed-form channel estimator is developed based on the least squares (LS) method with Tikhonov regularization and a corresponding data detection algorithm is proposed using the linear minimum mean square error (LMMSE) criterion. In the derived channel estimator, the unknown data is treated as part of the noise and the resulting data detection may not meet the required performance. To address this issue, an iterative method based on the variational inference approach is derived to improve performance. Simulation results show that the data detection performance of the proposed iterative algorithm initialized by the LMMSE data detector is close to the ideal case with perfect channel state information. © 2006 IEEE.published_or_final_versio
    • …
    corecore