29 research outputs found

    Transmitting Quantum Information Reliably across Various Quantum Channels

    Get PDF
    Transmitting quantum information across quantum channels is an important task. However quantum information is delicate, and is easily corrupted. We address the task of protecting quantum information from an information theoretic perspective -- we encode some message qudits into a quantum code, send the encoded quantum information across the noisy quantum channel, then recover the message qudits by decoding. In this dissertation, we discuss the coding problem from several perspectives.} The noisy quantum channel is one of the central aspects of the quantum coding problem, and hence quantifying the noisy quantum channel from the physical model is an important problem. We work with an explicit physical model -- a pair of initially decoupled quantum harmonic oscillators interacting with a spring-like coupling, where the bath oscillator is initially in a thermal-like state. In particular, we treat the completely positive and trace preserving map on the system as a quantum channel, and study the truncation of the channel by truncating its Kraus set. We thereby derive the matrix elements of the Choi-Jamiolkowski operator of the corresponding truncated channel, which are truncated transition amplitudes. Finally, we give a computable approximation for these truncated transition amplitudes with explicit error bounds, and perform a case study of the oscillators in the off-resonant and weakly-coupled regime numerically. In the context of truncated noisy channels, we revisit the notion of approximate error correction of finite dimension codes. We derive a computationally simple lower bound on the worst case entanglement fidelity of a quantum code, when the truncated recovery map of Leung et. al. is rescaled. As an application, we apply our bound to construct a family of multi-error correcting amplitude damping codes that are permutation-invariant. This demonstrates an explicit example where the specific structure of the noisy channel allows code design out of the stabilizer formalism via purely algebraic means. We study lower bounds on the quantum capacity of adversarial channels, where we restrict the selection of quantum codes to the set of concatenated quantum codes. The adversarial channel is a quantum channel where an adversary corrupts a fixed fraction of qudits sent across a quantum channel in the most malicious way possible. The best known rates of communicating over adversarial channels are given by the quantum Gilbert-Varshamov (GV) bound, that is known to be attainable with random quantum codes. We generalize the classical result of Thommesen to the quantum case, thereby demonstrating the existence of concatenated quantum codes that can asymptotically attain the quantum GV bound. The outer codes are quantum generalized Reed-Solomon codes, and the inner codes are random independently chosen stabilizer codes, where the rates of the inner and outer codes lie in a specified feasible region. We next study upper bounds on the quantum capacity of some low dimension quantum channels. The quantum capacity of a quantum channel is the maximum rate at which quantum information can be transmitted reliably across it, given arbitrarily many uses of it. While it is known that random quantum codes can be used to attain the quantum capacity, the quantum capacity of many classes of channels is undetermined, even for channels of low input and output dimension. For example, depolarizing channels are important quantum channels, but do not have tight numerical bounds. We obtain upper bounds on the quantum capacity of some unital and non-unital channels -- two-qubit Pauli channels, two-qubit depolarizing channels, two-qubit locally symmetric channels, shifted qubit depolarizing channels, and shifted two-qubit Pauli channels -- using the coherent information of some degradable channels. We use the notion of twirling quantum channels, and Smith and Smolin's method of constructing degradable extensions of quantum channels extensively. The degradable channels we introduce, study and use are two-qubit amplitude damping channels. Exploiting the notion of covariant quantum channels, we give sufficient conditions for the quantum capacity of a degradable channel to be the optimal value of a concave program with linear constraints, and show that our two-qubit degradable amplitude damping channels have this property

    Amortized entanglement of a quantum channel and approximately teleportationsimulable channels

    Get PDF
    This paper defines the amortized entanglement of a quantum channel as the largest difference in entanglement between the output and the input of the channel, where entanglement is quantified by an arbitrary entanglement measure. We prove that the amortized entanglement of a channel obeys several desirable properties, and we also consider special cases such as the amortized relative entropy of entanglement and the amortized Rains relative entropy. These latter quantities are shown to be single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of a quantum channel, respectively. Of especial interest is a uniform continuity bound for these latter two special cases of amortized entanglement, in which the deviation between the amortized entanglement of two channels is bounded from above by a simple function of the diamond norm of their difference and the output dimension of the channels. We then define approximately teleportation- and positive-partial-transpose-simulable (PPT-simulable) channels as those that are close in diamond norm to a channel which is either exactly teleportationor PPT-simulable, respectively. These results then lead to single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of channels that are approximately teleportation- or PPT-simulable, respectively. Finally, we generalize many of the concepts in the paper to the setting of general resource theories, defining the amortized resourcefulness of a channel and the notion of ν-freely-simulable channels, connecting these concepts in an operational way as well

    Approximate Degradable Quantum Channels

    Full text link
    Degradable quantum channels are an important class of completely positive trace-preserving maps. Among other properties, they offer a single-letter formula for the quantum and the private classical capacity and are characterized by the fact that a complementary channel can be obtained from the channel by applying a degrading channel. In this work we introduce the concept of approximate degradable channels, which satisfy this condition up to some finite ε0\varepsilon\geq0. That is, there exists a degrading channel which upon composition with the channel is ε\varepsilon-close in the diamond norm to the complementary channel. We show that for any fixed channel the smallest such ε\varepsilon can be efficiently determined via a semidefinite program. Moreover, these approximate degradable channels also approximately inherit all other properties of degradable channels. As an application, we derive improved upper bounds to the quantum and private classical capacity for certain channels of interest in quantum communication.Comment: v3: minor changes, published version. v2: 21 pages, 2 figures, improved bounds on the capacity for approximate degradable channels based on [arXiv:1507.07775], an author adde

    The superadditivity effects of quantum capacity decrease with the dimension for qudit depolarizing channels

    Full text link
    Quantum channel capacity is a fundamental quantity in order to understand how good can quantum information be transmitted or corrected when subjected to noise. However, it is generally not known how to compute such quantities, since the quantum channel coherent information is not additive for all channels, implying that it must be maximized over an unbounded number of channel uses. This leads to the phenomenon known as superadditivity, which refers to the fact that the regularized coherent information of nn channel uses exceeds one-shot coherent information. In this article, we study how the gain in quantum capacity of qudit depolarizing channels relates to the dimension of the systems considered. We make use of an argument based on the no-cloning bound in order to proof that the possible superadditive effects decrease as a function of the dimension for such family of channels. In addition, we prove that the capacity of the qudit depolarizing channel coincides with the coherent information when dd\rightarrow\infty. We conclude that when high dimensional qudits experiencing depolarizing noise are considered, the coherent information of the channel is not only an achievable rate but essentially the maximum possible rate for any quantum block code.Comment: 7 pages, 2 figure

    Trade-offs on number and phase shift resilience in bosonic quantum codes

    Full text link
    Minimizing the number of particles used by a quantum code is helpful, because every particle incurs a cost. One quantum error correction solution is to encode quantum information into one or more bosonic modes. We revisit rotation-invariant bosonic codes, which are supported on Fock states that are gapped by an integer gg apart, and the gap gg imparts number shift resilience to these codes. Intuitively, since phase operators and number shift operators do not commute, one expects a trade-off between resilience to number-shift and rotation errors. Here, we obtain results pertaining to the non-existence of approximate quantum error correcting gg-gapped single-mode bosonic codes with respect to Gaussian dephasing errors. We show that by using arbitrarily many modes, gg-gapped multi-mode codes can yield good approximate quantum error correction codes for any finite magnitude of Gaussian dephasing errors.Comment: 8 pages, 3 figures, 2 column

    Resonant Multilevel Amplitude Damping Channels

    Get PDF
    We introduce a new set of quantum channels: resonant multilevel amplitude damping (ReMAD) channels. Among other instances, they can describe energy dissipation effects in multilevel atomic systems induced by the interaction with a zero-temperature bosonic environment. At variance with the already known class of multilevel amplitude damping (MAD) channels, this new class of maps allows the presence of an environment unable to discriminate transitions with identical energy gaps. After characterizing the algebra of their composition rules, by analyzing the qutrit case, we show that this new set of channels can exhibit degradability and antidegradability in vast regions of the allowed parameter space. There we compute their quantum capacity and private classical capacity. We show that these capacities can be computed exactly also in regions of the parameter space where the channels aren't degradable nor antidegradable

    Causal limit on quantum communication

    Get PDF
    The capacity of a channel is known to be equivalent to the highest rate at which it can generate entanglement. Analogous to entanglement, the notion of a causality measure characterises the temporal aspect of quantum correlations. Despite holding an equally fundamental role in physics, temporal quantum correlations have yet to find their operational significance in quantum communication. Here we uncover a connection between quantum causality and channel capacity. We show the amount of temporal correlations between two ends of the noisy quantum channel, as quantified by a causality measure, implies a general upper bound on its channel capacity. The expression of this new bound is simpler to evaluate than most previously known bounds. We demonstrate the utility of this bound by applying it to a class of shifted depolarizing channels, which results in improvement over previously calculated bounds for this class of channels.Comment: 9 pages, 3 figure

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    Quantum capacity analysis of multi-level amplitude damping channels

    Full text link
    The set of Multi-level Amplitude Damping (MAD) quantum channels is introduced as a generalization of the standard qubit Amplitude Damping Channel to quantum systems of finite dimension dd. In the special case of d=3d=3, by exploiting degradability, data-processing inequalities, and channel isomorphism, we compute the associated quantum and private classical capacities for a rather wide class of maps, extending the set of solvable models known so far. We proceed then to the evaluation of the entanglement assisted, quantum and classical, capacities
    corecore