8,924 research outputs found

    New algorithms for microwave measurements of ocean winds

    Get PDF
    Improved second generation wind algorithms are used to process the three month SEASAT SMMR and SASS data sets. The new algorithms are derived without using in situ anemometer measurements. All known biases in the sensors prime measurements are removed, and the algorithms prime model functions are internally self-consistent. The computed SMMR and SASS winds are collocated and compared on a 150 km cell-by-cell basis, giving a total of 115444 wind comparisons. The comparisons are done using three different sets of SMMR channels. When the 6.6H SMMR channel is used for wind retrieval, the SMMR and SASS winds agree to within 1.3 m/s over the SASS primary swath. At nadir where the radar cross section is less sensitive to wind, the agreement degrades to 1.9 m/s. The agreement is very good for winds from 0 to 15 m/s. Above 15 m/s, the off-nadir SASS winds are consistently lower than the SMMR winds, while at nadir the high SASS winds are greater than SMMR's. When 10.7H is used for the SMMR wind channel, the SMMR/SASS wind comparisons are not quite as good. When the frequency of the wind channel is increased to 18 GHz, the SMMR/SASS agreement substantially degrades to about 5 m/s

    Theory and measure of certain image norms in SAR

    Get PDF
    The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms

    Advanced study of coastal zone oceanographic requirements for ERTS E and F

    Get PDF
    Earth Resources Technology Satellites E and F orbits and remote sensor instruments for coastal oceanographic data collectio

    Convective and stratiform rain: Multichannel microwave sensing over oceans

    Get PDF
    Measurements made by the Special Sensor Microwave/Imager (SSM/I) radiometer over the oceans, at 19, 37, and 85 GHz in dual polarization, are used to develop a model to classify rain into light-stratiform, moderately convective, and heavy convective types in the mesoscale convective systems (MCS). It is observed that the bulk of the 19- and 37-GHz data are linearly correlated with respect to one another, and generally increase together in brightness as the mean rain rate in the field of view (FOV) of the radiometer increases. However, a significant fraction of the data from these channels departs from this linear relationship, reflecting the nonuniform rain that is convective vs. the relatively light stratiform rain. It is inferred from the SSM/I data, in a MCS, when the slope dT sub 3/dT sub 19 is greater than unity there are optically thin clouds which produce light uniform rain. On the other hand, when dT sub 3/dT sub 19 is close to unity, the rain cells have an open structure and correspond to the convective type of rain. The openings between the cells are apparently a result of the downdrafts and/or entrainment. Relatively low values of 85-GHz brightness temperatures that are present when dT sub 37/dT sub 19 is close to unity support these views and, in addition, leads us to conclude that when the convection is heavy this brightness temperature decreases due to scattering by hydrometeors. On the basis of this explanation of the SSM/I data, an empirical rain retrieval algorithm is developed. Radar backscatter observations over the Atlantic Ocean next to Florida are used to demonstrate the applicability of this method. Three monthly mean maps of rainfall over the oceans from 50 degrees N to 50 degrees S, are presented to illustrate the ability of this method to sense seasonal and interannual variations of rain

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports

    Bayesian retrieval of complete posterior PDFs of oceanic rain rate from microwave observations

    Get PDF
    A new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) over the ocean is presented, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain-rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes’s theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance the understanding of theoretical benefits of the Bayesian approach, sensitivity analyses have been conducted based on two synthetic datasets for which the “true” conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism, but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak owing to saturation effects. It is also suggested that both the choice of the estimators and the prior information are crucial to the retrieval. In addition, the performance of the Bayesian algorithm herein is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate

    On requirements for a satellite mission to measure tropical rainfall

    Get PDF
    Tropical rainfall data are crucial in determining the role of tropical latent heating in driving the circulation of the global atmosphere. Also, the data are particularly important for testing the realism of climate models, and their ability to simulate and predict climate accurately on the seasonal time scale. Other scientific issues such as the effects of El Nino on climate could be addressed with a reliable, extended time series of tropical rainfall observations. A passive microwave sensor is planned to provide information on the integrated column precipitation content, its areal distribution, and its intensity. An active microwave sensor (radar) will define the layer depth of the precipitation and provide information about the intensity of rain reaching the surface, the key to determining the latent heat input to the atmosphere. A visible/infrared sensor will provide very high resolution information on cloud coverage, type, and top temperatures and also serve as the link between these data and the long and virtually continuous coverage by the geosynchronous meteorological satellites. The unique combination of sensor wavelengths, coverages, and resolving capabilities together with the low-altitude, non-Sun synchronous orbit provide a sampling capability that should yield monthly precipitation amounts to a reasonable accuracy over a 500- by 500-km grid

    Remote sensing of earth terrain

    Get PDF
    A mathematically rigorous and fully polarimetric radar clutter model used to evaluate the radar backscatter from various types of terrain clutter such as forested areas, vegetation canopies, snow covered terrains, or ice fields is presented. With this model, the radar backscattering coefficients for the multichannel polarimetric radar returns can be calculated, in addition to the complex cross correlation coefficients between elements of the polarimetric measurement vector. The complete polarization covariance matrix can be computed and the scattering properties of the clutter environment characterized over a broad range of incident angle and frequencies

    Radar systems for the water resources mission, volume 1

    Get PDF
    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined
    corecore