1,148 research outputs found

    Intersession Variability Compensation in Language and Speaker Identification

    Get PDF
    Variabilita kanálu a hovoru je velmi důležitým problémem v úloze rozpoznávání mluvčího. V současné době je ve velkém množství vědeckých článků uvedeno několik technik pro kompenzaci vlivu kanálu. Kompenzace vlivu kanálu může být implementována jak v doméně modelu, tak i v doménách příznaků i skóre. Relativně nová výkoná technika je takzvaná eigenchannel adaptace pro GMM (Gaussian Mixture Models). Mevýhodou této metody je nemožnost její aplikace na jiné klasifikátory, jako napřílad takzvané SVM (Support Vector Machines), GMM s různým počtem Gausových komponent nebo v rozpoznávání řeči s použitím skrytých markovových modelů (HMM). Řešením může být aproximace této metody, eigenchannel adaptace v doméně příznaků. Obě tyto techniky, eigenchannel adaptace v doméně modelu a doméně příznaků v systémech rozpoznávání mluvčího, jsou uvedeny v této práci. Po dosažení dobrých výsledků v rozpoznávání mluvčího, byl přínos těchto technik zkoumán pro akustický systém rozpoznávání jazyka zahrnující 14 jazyků. V této úloze má nežádoucí vliv nejen variabilita kanálu, ale i variabilita mluvčího. Výsledky jsou prezentovány na datech definovaných pro evaluaci rozpoznávání mluvčího z roku 2006 a evaluaci rozpoznávání jazyka v roce 2007, obě organizované Amerických Národním Institutem pro Standard a Technologie (NIST)Varibiality in the channel and session is an important issue in the text-independent speaker recognition task. To date, several techniques providing channel and session variability compensation were introduced in a number of scientic papers. Such implementation can be done in feature, model and score domain. Relatively new and powerful approach to remove channel distortion is so-called eigenchannel adaptation for Gaussian Mixture Models (GMM). The drawback of the technique is that it is not applicable in its original implementation to different types of classifiers, eg. Support Vector Machines (SVM), GMM with different number of Gaussians or in speech recognition task using Hidden Markov Models (HMM). The solution can be the approximation of the technique, eigenchannel adaptation in feature domain. Both, the original eigenchannel adaptation and eigenchannel adaptation on features in task of speaker recognition are presented. After achieving good results in speaker recognition, contribution of the same techniques was examined in acoustic language identification system with 1414 languages. In this task undesired factors are channel and speaker variability. Presented results are presented on the NIST Speaker Recognition Evaluation 2006 data and NIST Language Recognition Evaluation 2007 data.

    I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences

    Get PDF
    The I4U consortium was established to facilitate a joint entry to NIST speaker recognition evaluations (SRE). The latest edition of such joint submission was in SRE 2018, in which the I4U submission was among the best-performing systems. SRE'18 also marks the 10-year anniversary of I4U consortium into NIST SRE series of evaluation. The primary objective of the current paper is to summarize the results and lessons learned based on the twelve sub-systems and their fusion submitted to SRE'18. It is also our intention to present a shared view on the advancements, progresses, and major paradigm shifts that we have witnessed as an SRE participant in the past decade from SRE'08 to SRE'18. In this regard, we have seen, among others, a paradigm shift from supervector representation to deep speaker embedding, and a switch of research challenge from channel compensation to domain adaptation.Comment: 5 page

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    A Novel Windowing Technique for Efficient Computation of MFCC for Speaker Recognition

    Full text link
    In this paper, we propose a novel family of windowing technique to compute Mel Frequency Cepstral Coefficient (MFCC) for automatic speaker recognition from speech. The proposed method is based on fundamental property of discrete time Fourier transform (DTFT) related to differentiation in frequency domain. Classical windowing scheme such as Hamming window is modified to obtain derivatives of discrete time Fourier transform coefficients. It has been mathematically shown that the slope and phase of power spectrum are inherently incorporated in newly computed cepstrum. Speaker recognition systems based on our proposed family of window functions are shown to attain substantial and consistent performance improvement over baseline single tapered Hamming window as well as recently proposed multitaper windowing technique

    Compensation of Nuisance Factors for Speaker and Language Recognition

    Get PDF
    The variability of the channel and environment is one of the most important factors affecting the performance of text-independent speaker verification systems. The best techniques for channel compensation are model based. Most of them have been proposed for Gaussian mixture models, while in the feature domain blind channel compensation is usually performed. The aim of this work is to explore techniques that allow more accurate intersession compensation in the feature domain. Compensating the features rather than the models has the advantage that the transformed parameters can be used with models of a different nature and complexity and for different tasks. In this paper, we evaluate the effects of the compensation of the intersession variability obtained by means of the channel factors approach. In particular, we compare channel variability modeling in the usual Gaussian mixture model domain, and our proposed feature domain compensation technique. We show that the two approaches lead to similar results on the NIST 2005 Speaker Recognition Evaluation data with a reduced computation cost. We also report the results of a system, based on the intersession compensation technique in the feature space that was among the best participants in the NIST 2006 Speaker Recognition Evaluation. Moreover, we show how we obtained significant performance improvement in language recognition by estimating and compensating, in the feature domain, the distortions due to interspeaker variability within the same language. Index Terms—Factor anal
    corecore