14 research outputs found

    Game-Theoretic Frameworks and Strategies for Defense Against Network Jamming and Collocation Attacks

    Get PDF
    Modern networks are becoming increasingly more complex, heterogeneous, and densely connected. While more diverse services are enabled to an ever-increasing number of users through ubiquitous networking and pervasive computing, several important challenges have emerged. For example, densely connected networks are prone to higher levels of interference, which makes them more vulnerable to jamming attacks. Also, the utilization of software-based protocols to perform routing, load balancing and power management functions in Software-Defined Networks gives rise to more vulnerabilities that could be exploited by malicious users and adversaries. Moreover, the increased reliance on cloud computing services due to a growing demand for communication and computation resources poses formidable security challenges due to the shared nature and virtualization of cloud computing. In this thesis, we study two types of attacks: jamming attacks on wireless networks and side-channel attacks on cloud computing servers. The former attacks disrupt the natural network operation by exploiting the static topology and dynamic channel assignment in wireless networks, while the latter attacks seek to gain access to unauthorized data by co-residing with target virtual machines (VMs) on the same physical node in a cloud server. In both attacks, the adversary faces a static attack surface and achieves her illegitimate goal by exploiting a stationary aspect of the network functionality. Hence, this dissertation proposes and develops counter approaches to both attacks using moving target defense strategies. We study the strategic interactions between the adversary and the network administrator within a game-theoretic framework. First, in the context of jamming attacks, we present and analyze a game-theoretic formulation between the adversary and the network defender. In this problem, the attack surface is the network connectivity (the static topology) as the adversary jams a subset of nodes to increase the level of interference in the network. On the other side, the defender makes judicious adjustments of the transmission footprint of the various nodes, thereby continuously adapting the underlying network topology to reduce the impact of the attack. The defender\u27s strategy is based on playing Nash equilibrium strategies securing a worst-case network utility. Moreover, scalable decomposition-based approaches are developed yielding a scalable defense strategy whose performance closely approaches that of the non-decomposed game for large-scale and dense networks. We study a class of games considering discrete as well as continuous power levels. In the second problem, we consider multi-tenant clouds, where a number of VMs are typically collocated on the same physical machine to optimize performance and power consumption and maximize profit. This increases the risk of a malicious virtual machine performing side-channel attacks and leaking sensitive information from neighboring VMs. The attack surface, in this case, is the static residency of VMs on a set of physical nodes, hence we develop a timed migration defense approach. Specifically, we analyze a timing game in which the cloud provider decides when to migrate a VM to a different physical machine to mitigate the risk of being compromised by a collocated malicious VM. The adversary decides the rate at which she launches new VMs to collocate with the victim VMs. Our formulation captures a data leakage model in which the cost incurred by the cloud provider depends on the duration of collocation with malicious VMs. It also captures costs incurred by the adversary in launching new VMs and by the defender in migrating VMs. We establish sufficient conditions for the existence of Nash equilibria for general cost functions, as well as for specific instantiations, and characterize the best response for both players. Furthermore, we extend our model to characterize its impact on the attacker\u27s payoff when the cloud utilizes intrusion detection systems that detect side-channel attacks. Our theoretical findings are corroborated with extensive numerical results in various settings as well as a proof-of-concept implementation in a realistic cloud setting

    A Survey on the Communication Protocols and Security in Cognitive Radio Networks

    Get PDF
    A cognitive radio (CR) is a radio that can change its transmission parameters based on the perceived availability of the spectrum bands in its operating environment. CRs support dynamic spectrum access and can facilitate a secondary unlicensed user to efficiently utilize the available underutilized spectrum allocated to the primary licensed users. A cognitive radio network (CRN) is composed of both the secondary users with CR-enabled radios and the primary users whose radios need not be CR-enabled. Most of the active research conducted in the area of CRNs has been so far focused on spectrum sensing, allocation and sharing. There is no comprehensive review paper available on the strategies for medium access control (MAC), routing and transport layer protocols, and the appropriate representative solutions for CRNs. In this paper, we provide an exhaustive analysis of the various techniques/mechanisms that have been proposed in the literature for communication protocols (at the MAC, routing and transport layers), in the context of a CRN, as well as discuss in detail several security attacks that could be launched on CRNs and the countermeasure solutions that have been proposed to avoid or mitigate them. This paper would serve as a good comprehensive review and analysis of the strategies for MAC, routing and transport protocols and security issues for CRNs as well as would lay a strong foundation for someone to further delve onto any particular aspect in greater depth

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    EMI and IEMI Impacts on the Radio Communication Network of Electrified Railway Systems: A Critical Review

    Get PDF

    Management system for Unmanned Aircraft Systems teams

    Get PDF
    This thesis investigates new schemes to improve the operability of heterogeneous Unmanned Aircraft Systems (UAS) teams through the exploitation of inter-vehicular communications. Releasing ground links from unnecessary data exchanges saves resources (power, bandwidth, etc) and alleviates the inherent scalability problem resulting from the increase in the number of UAS to be controlled simultaneously. In first place, a framework to classify UAS according to their level of autonomy is presented along with efficient methodologies to assess the autonomy level of either individual or multiple UAS. An architecture based on an aerial Mobile Ad-hoc Network (MANET) is proposed for the management of the data exchange among all the vehicles in the team. A performance evaluation of the two most relevant MANET approaches for path discovery (namely, reactive and proactive) has been carried out by means of simulation of two well-known routing protocols: Ad-hoc On-demand Distance Vector (AODV) and Destination Sequenced Distance Vector (DSDV). Several network configurations are generated to emulate different possible contingencies that might occur in real UAS team operations. Network topology evolution, vehicle flight dynamics and data traffic patterns are considered as input parameters to the simulation model. The analysis of the system behaviour for each possible network configuration is used to evaluate the appropriateness of both approaches in different mission scenarios. Alternative network solutions based on Delay Tolerant Networking (DTN) for situations of intermittent connectivity and network partitioning are outlined. Finally, an assessment of the simulation results is presented along with a discussion about further research challenges

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Energy efficient medium access control for wireless sensor networks

    Get PDF
    A wireless sensor network designates a system composed of numerous sensor nodes distributed over an area in order to collect information. The sensor nodes communicate wirelessly with each other in order to self-organize into a multi-hop network, collaborate in the sensing activity and forward the acquired information towards one or more users of the information. Applications of sensor networks are numerous, ranging from environmental monitoring, home and building automation to industrial control. Since sensor nodes are expected to be deployed in large numbers, they must be inexpensive. Communication between sensor nodes should be wireless in order to minimize the deployment cost. The lifetime of sensor nodes must be long for minimal maintenance cost. The most important consequence of the low cost and long lifetime requirements is the need for low power consumption. With today's technology, wireless communication hardware consumes so much power that it is not acceptable to keep the wireless communication interface constantly in operation. As a result, it is required to use a communication protocol with which sensor nodes are able to communicate keeping the communication interface turned-off most of the time. The subject of this dissertation is the design of medium access control protocols permitting to reach a very low power consumption when communicating at a low average throughput in multi-hop wireless sensor networks. In a first part, the performance of a scheduled protocol (time division multiple access, TDMA) is compared to the one of a contention protocol (non-persistent carrier sensing multiple access with preamble sampling, NP-CSMA-PS). The preamble sampling technique is a scheme that avoids constant listening to an idle medium. This thesis presents a low power contention protocol obtained through the combination of preamble sampling with non-persistent carrier sensing multiple access. The analysis of the strengths and weaknesses of TDMA and NP-CSMA-PS led us to propose a solution that exploits TDMA for the transport of frequent periodic data traffic and NP-CSMA-PS for the transport of sporadic signalling traffic required to setup the TDMA schedule. The second part of this thesis describes the WiseMAC protocol. This protocol is a further enhancement of CSMA with preamble sampling that proved to provide both a low power consumption in low traffic conditions and a high energy efficiency in high traffic conditions. It is shown that this protocol can provide either a power consumption or a latency several times lower that what is provided by previously proposed protocols. The WiseMAC protocol was initially designed for multi-hop wireless sensor networks. A comparison with power saving protocols designed specifically for the downlink of infrastructure wireless networks shows that it is also of interest in such cases. An implementation of the WiseMAC protocol has permitted to validate experimentally the proposed concepts and the presented analysis

    Cognitive radio networks : quality of service considerations and enhancements

    Get PDF
    The explosive growth of wireless and mobile networks, such as the Internet of Things and 5G, has led to a massive number of devices that primarily use wireless channels within a limited range of the radio frequency spectrum (RFS). The use of RFS is heavily regulated, both nationally and internationally, and is divided into licensed and unlicensed bands. While many of the licensed wireless bands are underutilised, useable unlicensed bands are usually overcrowded, making the efficient use of RFS one of the critical challenges faced by future wireless communication technologies. The cognitive radio (CR) concept is proposed as a promising solution for the underutilisation of useful RFS bands. Fundamentally, CR technology is based on determining the unoccupied licensed RFS bands, called spectrum white spaces or holes, and accessing them to achieve better RFS utilisation and transmission propagation. The holes are the frequencies unused by the licensed user, or primary user (PU). Based on spectrum sensing, a CR node, or secondary user (SU), senses the surrounding spectrum periodically to detect any potential PU transmission in the current channel and to identify the available spectrum holes. Under current RFS regulations, SUs may use spectrum holes as long as their transmissions do not interfere with those of the PU. However, effective spectrum sensing can introduce overheads to a CR node operation. Such overheads affect the quality of service (QoS) of the running applications. Reducing the sensing impact on the QoS is one of the key challenges to adopting CR technology, and more studies of QoS issues related to implementing CR features are needed. This thesis aims to address these QoS issues in CR while considered the enhancement of RFS utilisation. This study concentrates on the spectrum sensing function, among other CR functions, because of its major impact on QoS and spectrum utilisation. Several spectrum sensing methods are reviewed to identify potential research gaps in analysing and addressing related QoS implications. It has been found that none of the well-known sensing techniques is suitable for all the diverse QoS requirements and RFS conditions: in fact, higher accuracy sensing methods cause a significant QoS degradation, as illustrated by several simulations in this work. For instance, QoS degradation caused by high-accuracy sensing has not yet been addressed in the IEEE 802.11e QoS mechanism used in the proposed CR standard, IEEE 802.11af (or White-Fi). This study finds that most of the strategies proposed to conduct sensing are based on a fixed sensing method that is not adaptable to the changeable nature of QoS requirements. In contrast, this work confirms the necessity of using various sensing techniques and parameters during a CR node operation for better performance

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security
    corecore