30,151 research outputs found

    Channel Aided Interference Alignment

    Full text link
    Interference alignment (IA) techniques mostly attain their degrees of freedom (DoF) benefits as the number of channel extensions tends to infinity. Intuitively, the more interfering signals that need to be aligned, the larger the number of dimensions needed to align them. This requirement poses a major challenge for IA in practical systems. This work evaluates the necessary and sufficient conditions on channel structure of a fully connected interference network with time-varying fading to make perfect IA feasible within limited number of channel extensions. We propose a method based on the obtained conditions on the channel structure to achieve perfect IA. For the case of 33 user interference channel, it is shown that only one condition on channel coefficients is required to make perfect IA feasible at all receivers. IA feasibility literature have mainly focused on network topology so far. In contrast, derived channel aiding conditions in this work can be considered as the perfect IA feasibility conditions on channel structure.Comment: 20 pages, 4 figure. arXiv admin note: text overlap with arXiv:0901.4379 by other author

    A New DoF Upper Bound and Its Achievability for KK-User MIMO Y Channels

    Full text link
    This work is to study the degrees of freedom (DoF) for the KK-user MIMO Y channel. Previously, two transmission frameworks have been proposed for the DoF analysis when Nβ‰₯2MN \geq 2M, where MM and NN denote the number of antennas at each source node and the relay node respectively. The first method is named as signal group based alignment proposed by Hua et al. in [1]. The second is named as signal pattern approach introduced by Wang et al. in [2]. But both of them only studied certain antenna configurations. The maximum achievable DoF in the general case still remains unknown. In this work, we first derive a new upper bound of the DoF using the genie-aided approach. Then, we propose a more general transmission framework, generalized signal alignment (GSA), and show that the previous two methods are both special cases of GSA. With GSA, we prove that the new DoF upper bound is achievable when NM∈(0,2+4K(Kβˆ’1)]βˆͺ[Kβˆ’2,+∞)\frac{N}{M} \in \left(0,2+\frac{4}{K(K-1)}\right] \cup \left[K-2, +\infty\right). The DoF analysis in this paper provides a major step forward towards the fundamental capacity limit of the KK-user MIMO Y channel. It also offers a new approach of integrating interference alignment with physical layer network coding.Comment: 6 pages, 3 figures, submitted to IEEE ICC 2015. arXiv admin note: text overlap with arXiv:1405.071

    ν˜‘λ™ν†΅μ‹  λ„€νŠΈμ›Œν¬μ—μ„œ λ‹€μ΄λ²„μ‹œν‹° 및 μžμœ λ„μ— λŒ€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2013. 8. λ…Έμ’…μ„ .This dissertation contains the following three contributions to the interesting research topics on diversity techniques and interference alignment (IA) for cooperative communication networks. *Relay on-off threshold (ROT) for non-orthogonal decode and forward (NDF) protocol with distributed orthogonal space-time block codes (DOSTBCs) - Calculate the optimal ROT for NDF protocol with DOSTBCs in high signal to noise power ratio (SNR) region. - Propose suboptimal ROT for NDF protocol with DOSTBCs in low SNR region. - Analyze the diversity order of the proposed scheme. *New IA schemes aided by relays for quasi-static MX2 X channel - Propose IA scheme aided by one full-duplex relay. - Propose IA scheme aided by two half-duplex relay. - Prove that the proposed IA schemes achieve the maximum degrees of freedom (DoF) for quasi-static MX2 X channel. * Selection diversity on the IA for multi-input and multi-output (MIMO) interference channel - Propose the selection criterion of beamforming matrices of IA for MIMO interference channel. - Analyze the diversity order of the proposed scheme. First, we construct the DOSTBCs using source and relay in the cooperative communication networks. In order to decode the DOSTBCs, the destination uses the linear combining (LC) decoding scheme. In this system models, the symbol error rate (SER) is formulated and the ROT is calculated to minimize the SER. It is proved that the full diversity order of NDF protocol can be achieved by using the relay on-off scheme with the optimal threshold. In the second part of this dissertation, two new IA schemes aided by relays for quasi-static MX2 X channel are proposed. The first proposed scheme uses one full-duplex relay and it can achieves the maximum DoF. However, at the full-duplex relay, the transmit signal can be strong self-interference, called echo and thus it is difficult to implement practically. To resolve this problem, at the second proposed IA scheme, two half-duplex relays are used and it is proved that the second proposed IA scheme can also achieve the maximum DoF of MX2 X channel. Finally, the selection scheme for IA is proposed for MIMO interference channel. Most of IA schemes are focused on DoF but there is only a few research results for diversity order which is a crucial measure of reliability. Therefore, we propose a selection criterion to minimize SER and analyze the diversity order of the proposed scheme in the MIMO interference channel.Abstract i Contents iv List of Tables vii List of Figures viii 1. Introduction 1.1. Background 1.2. Overview of Dissertation 1.3. Terms and Notations 2. Diversity Techniques and Interference Alignment 2.1. MIMO Communications 2.2. Space-Time Coding and Selection Diversity 2.3. Cooperative Communications 2.4. Interference Alignment 3. Relay On-Off Threshold for NDF Protocol with Distributed Orthogonal Space-Time Block Codes 3.1. Introduction 3.2. System Models and Linear Combining Decoding 3.2.1. System Models of NDF Protocol 3.2.2. Linear Combining Decoding 3.3. Relay On-Off Threshold and Diversity Analysis 3.3.1. Relay On-Off Threshold 3.3.2. Relay On-Off Threshold for LC Decoding 3.3.3. Decision of Suboptimal Relay On-Off Threshold in Low SNR Region 3.3.4. Diversity Analysis 3.4. Numerical Analysis 3.5. Conclusion 4. New Interference Alignment Scheme Aided by Relays for Quasi-Static X Channels 4.1. Introduction 4.2. Preliminaries: X Channel and Interference Alignment 4.3. The Proposed Schemes and System Models 4.3.1. Two Proposed Schemes 4.3.2. System Models for the Proposed Schemes 4.4. Achievability of the Proposed IA Schemes 4.4.1. IA Scheme with a Full-Duplex Relay 4.4.2. IA Scheme with Two Half-Duplex Relays 4.5. Achievability of the Proposed IA Schemes for the 2Γ—M X Channel 4.6. Numerical Analysis 4.7. Conclusion 5. Selection Diversity on the Interference Alignment for MIMO Interference Channels 5.1. Introduction 5.2. Characteristic Function of Multivariate Rayleigh Random Variables 5.3. Combining IA and Selection Schemes for 3-User MIMO Interference Channel 5.3.1. System Model and IA for 3-User MIMO Interference Channel 5.3.2. Orthogonalization of Beamforming Matrices 5.3.3. Selection of Beamforming Matrices 5.4. Diversity Analysis 5.5. Simulation Results 5.6. Conclusions 6. Conclusions Bibliography 초둝Docto

    Interference alignment for one-hop and two-hops MIMO systems with uncoordinated interference

    Get PDF
    Providing higher data rate is a momentous goal for wireless communications systems, while interference is an important obstacle to reach this purpose. To cope with this problem, interference alignment (IA) has been proposed. In this paper, we propose two rank minimization methods to enhance the performance of IA in the presence of uncoordinated interference, i.e., interference that cannot be properly aligned with the rest of the network and thus is a crucial issue. In this scenario, perfect and imperfect channel state information (CSI) cases are considered. Our proposed approaches employ the l2 and the Schatten-p norms to approximate the rank function, due to its non-convexity. Also, we propose a new convex relaxation to expand the feasible set of our optimization problem, providing lower rank solutions compared to other IA methods from the literature. In addition, we propose a modified weighted-sum method to deal with interference in the relay-aided MIMO interference channel, which employs a set of weighting parameters in order to find more solutions

    A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks

    Full text link
    The degrees of freedom (DoF) of an X-network with M transmit and N receive nodes utilizing interference alignment with the support of JJ relays each equipped with LjL_j antennas operating in a half-duplex non-regenerative mode is investigated. Conditions on the feasibility of interference alignment are derived using a proper transmit strategy and a structured approach based on a Kronecker-product representation. The advantages of this approach are twofold: First, it extends existing results on the achievable DoF to generalized antenna configurations. Second, it unifies the analysis for time-varying and constant channels and provides valuable insights and interconnections between the two channel models. It turns out that a DoF of \nicefrac{NM}{M+N-1} is feasible whenever the sum of the Lj2β‰₯[Nβˆ’1][Mβˆ’1]L_j^2 \geq [N-1][M-1]
    • …
    corecore