55 research outputs found

    Service quality assurance for the IPTV networks

    Get PDF
    The objective of the proposed research is to design and evaluate end-to-end solutions to support the Quality of Experience (QoE) for the Internet Protocol Television (IPTV) service. IPTV is a system that integrates voice, video, and data delivery into a single Internet Protocol (IP) framework to enable interactive broadcasting services at the subscribers. It promises significant advantages for both service providers and subscribers. For instance, unlike conventional broadcasting systems, IPTV broadcasts will not be restricted by the limited number of channels in the broadcast/radio spectrum. Furthermore, IPTV will provide its subscribers with the opportunity to access and interact with a wide variety of high-quality on-demand video content over the Internet. However, these advantages come at the expense of stricter quality of service (QoS) requirements than traditional Internet applications. Since IPTV is considered as a real-time broadcast service over the Internet, the success of the IPTV service depends on the QoE perceived by the end-users. The characteristics of the video traffic as well as the high-quality requirements of the IPTV broadcast impose strict requirements on transmission delay. IPTV framework has to provide mechanisms to satisfy the stringent delay, jitter, and packet loss requirements of the IPTV service over lossy transmission channels with varying characteristics. The proposed research focuses on error recovery and channel change latency problems in IPTV networks. Our specific aim is to develop a content delivery framework that integrates content features, IPTV application requirements, and network characteristics in such a way that the network resource utilization can be optimized for the given constraints on the user perceived service quality. To achieve the desired QoE levels, the proposed research focuses on the design of resource optimal server-based and peer-assisted delivery techniques. First, by analyzing the tradeoffs on the use of proactive and reactive repair techniques, a solution that optimizes the error recovery overhead is proposed. Further analysis on the proposed solution is performed by also focusing on the use of multicast error recovery techniques. By investigating the tradeoffs on the use of network-assisted and client-based channel change solutions, distributed content delivery frameworks are proposed to optimize the error recovery performance. Next, bandwidth and latency tradeoffs associated with the use of concurrent delivery streams to support the IPTV channel change are analyzed, and the results are used to develop a resource-optimal channel change framework that greatly improves the latency performance in the network. For both problems studied in this research, scalability concerns for the IPTV service are addressed by properly integrating peer-based delivery techniques into server-based solutions.Ph.D

    Enabling Multipath and Multicast Data Transmission in Legacy and Future Internet

    Get PDF
    The quickly growing community of Internet users is requesting multiple applications and services. At the same time the structure of the network is changing. From the performance point of view, there is a tight interplay between the application and the network design. The network must be constructed to provide an adequate performance of the target application. In this thesis we consider how to improve the quality of users' experience concentrating on two popular and resource-consuming applications: bulk data transfer and real-time video streaming. We share our view on the techniques which enable feasibility and deployability of the network functionality leading to unquestionable performance improvement for the corresponding applications. Modern mobile devices, equipped with several network interfaces, as well as multihomed residential Internet hosts are capable of maintaining multiple simultaneous attachments to the network. We propose to enable simultaneous multipath data transmission in order to increase throughput and speed up such bandwidth-demanding applications as, for example, file download. We design an extension for Host Identity Protocol (mHIP), and propose a multipath data scheduling solution on a wedge layer between IP and transport, which effectively distributes packets from a TCP connection over available paths. We support our protocol with a congestion control scheme and prove its ability to compete in a friendly manner against the legacy network protocols. Moreover, applying game-theoretic analytical modelling we investigate how the multihomed HIP multipath-enabled hosts coexist in the shared network. The number of real-time applications grows quickly. Efficient and reliable transport of multimedia content is a critical issue of today's IP network design. In this thesis we solve scalability issues of the multicast dissemination trees controlled by the hybrid error correction. We propose a scalable multicast architecture for potentially large overlay networks. Our techniques address suboptimality of the adaptive hybrid error correction (AHEC) scheme in the multicast scenarios. A hierarchical multi-stage multicast tree topology is constructed in order to improve the performance of AHEC and guarantee QoS for the multicast clients. We choose an evolutionary networking approach that has the potential to lower the required resources for multimedia applications by utilizing the error-correction domain separation paradigm in combination with selective insertion of the supplementary data from parallel networks, when the corresponding content is available. Clearly both multipath data transmission and multicast content dissemination are the future Internet trends. We study multiple problems related to the deployment of these methods.Internetin nopeasti kasvava käyttäjäkunta vaatii verkolta yhä enemmän sovelluksia ja palveluita. Samaan aikaan verkon rakenne muuttuu. Suorituskyvyn näkökulmasta on olemassa selvä vuorovaikutussovellusten ja verkon suunnittelun välillä. Verkko on rakennettava siten, että se pystyy takaamaan riittävän suorituskyvyn halutuille palveluille. Tässä väitöskirjassa pohditaan, miten verkon käyttökokemusta voidaan parantaa keskittyen kahteen suosittuun ja resursseja vaativaan sovellukseen: tiedonsiirtoon ja reaaliaikaiseen videon suoratoistoon. Esitämme näkemyksemme tekniikoista, jotka mahdollistavat tarvittavien verkkotoiminnallisuuksien helpon toteuttavuuden sekä kiistatta parantavat sovelluksien suorityskykyä. Nykyaikaiset mobiililaitteet monine verkkoyhteyksineen, kuten myös kotitietokoneet, pystyvät ylläpitämään monta internet-yhteyttä samanaikaisesti. Siksi ehdotamme monikanavaisen tiedonsiirron käyttöä suorituskyvyn parantamiseksi ja etenkin vaativien verkkosovelluksien, kuten tiedostonsiirron, nopeuttamiseksi. Tässä väitöskirjassa suunnitellaan Host Identity Protocol (mHIP) -laajennus, sekä esitetään tiedonsiirron vuorotteluratkaisu, joka hajauttaa TCP-yhteyden tiedonsiirtopaketit käytettävissä oleville kanaville. Protokollamme tueksi luomme myös ruuhkautumishallinta-algoritmin ja näytämme sen pystyvän toimimaan yhteen nykyisien verkkoprotokollien kanssa. Tämän lisäksi tutkimme peliteoreettista mallinnusta käyttäen, miten monikanavaiset HIP-verkkopäätteet toimivat muiden kanssa jaetuissa verkoissa. Reaaliaikaisten sovellusten määrä kasvaa nopeasti. Tehokas ja luotettava multimediasisällön siirto on olennainen vaatimus nykypäivän IP-verkoissa. Tässä työssä ratkaistaan monilähetyksen (multicast) jakelustruktuurin skaalautuvuuteen liittyviä ongelmia. Ehdotamme skaalautuvaa monilähetysarkkitehtuuria suurille peiteverkoille. Ratkaisumme puuttuu adaptiivisen virhekorjauksen (Adaptive Hybrid Error Correction, AHEC) alioptimaalisuuteen monilähetystilanteissa. Luomme hierarkisen monivaiheisen monilähetyspuutopologian parantaaksemme AHECin suorituskykyä, sekä taataksemme monilähetysasiakkaiden palvelun laadun. Valitsimme evoluutiomaisen lähestymistavan, jolla on potentiaalia keventää multimediasovelluksien verkkoresurssivaatimuksia erottamalla virhekorjauksen omaksi verkkotunnuksekseen, sekä käyttämällä valikoivaa täydentävää tiedonlisäystä rinnakkaisverkoista vastaavan sisällön ollessa saatavilla. Sekä monikanava- että monilähetystiedonsiirto ovat selvästi osa internetin kehityssuuntaa. Tässä väitöskirjassa tutkimme monia ongelmia näiden tekniikoiden käyttöönottoon liittyen

    Improved Iptv Channel Change times Through Multicast Caching of Pre-selected Channels

    Get PDF
    Name: RAY, THOMAS Date of Degree: DECEMBER, 2014 Title of Study: IMPROVED IPTV CHANNEL CHANGE TIMES THROUGH MULTICAST CACHING OF PRE-SELECTED CHANNELSMajor Field: ELECTRICAL ENGINEERINGAbstract: IPTV has grown in recent years to an estimated 100 million users worldwide. IPTV uses IGMP processes to stream an individual channel to a user until the next channel change when the current channel is stopped and the new selection begins streaming. One of the critical factors determining customer satisfaction is the requirement to have reasonably rapid channel change times of 2 seconds or less, but current channel change times are frequently above that threshold. Numerous research efforts have been ongoing to reduce these times including edge servers, I-frame management, buffering improvements, dynamic video coding, and pre-selecting channels. Channel pre-selection involves sending additional channels in hopes that the user's next selection will already be present at the user's set top box to reduce the channel change time. While this pre-selection technique has previously been proposed, the proposals have been limited in scope, typically based on set top box replacement, and lack specific details regarding the expected channel change reductions attained. This research addressed all of these shortcomings beginning with laboratory testing to verify that the channel change time reduction for successful pre-selection is two times the network delay plus the IGMP processing time which equates to an average of 320 millisecond reduction per channel change. Several pre-selection models were developed and evaluated using theoretical calculations, functional testing, and performance simulations. Sample data was generated to reflect a wide range of user IPTV viewing behavior for use in the performance simulations. The top two models resulted in an average of well over 70% success rates in accurately pre-streaming the user's next selection in the multicast cache output. This approach also has the benefit of being implemented on IPTV provider equipment and would typically only require firmware upgrades without the need for expensive new equipment or changes to existing standards. Operational considerations were also discussed to reduce problems and delays during the implementation phase of the system. Additional applications and future improvements were also presented.Electrical Engineerin

    Provider-Controlled Bandwidth Management for HTTP-based Video Delivery

    Get PDF
    Over the past few years, a revolution in video delivery technology has taken place as mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed the landscape of video delivery services. For decades, high quality video was only available in the home via linear television or physical media. Though Web-based services brought video to desktop and laptop computers, the dominance of proprietary delivery protocols and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced new questions as to the scalability and manageability of OTT video delivery. This dissertation addresses the question of how to enable for content and network service providers the ability to monitor and manage large numbers of HTTP adaptive streaming clients in an OTT environment. Our early work focused on demonstrating the viability of server-side pacing schemes to produce an HTTP-based streaming server. We also investigated the ability of client-side pacing schemes to work with both commodity HTTP servers and our HTTP streaming server. Continuing our client-side pacing research, we developed our own client-side data proxy architecture which was implemented on a variety of mobile devices and operating systems. We used the portable client architecture as a platform for investigating different rate adaptation schemes and algorithms. We then concentrated on evaluating the network impact of multiple adaptive bitrate clients competing for limited network resources, and developing schemes for enforcing fair access to network resources. The main contribution of this dissertation is the definition of segment-level client and network techniques for enforcing class of service (CoS) differentiation between OTT HTTP adaptive streaming clients. We developed a segment-level network proxy architecture which works transparently with adaptive bitrate clients through the use of segment replacement. We also defined a segment-level rate adaptation algorithm which uses download aborts to enforce CoS differentiation across distributed independent clients. The segment-level abstraction more accurately models application-network interactions and highlights the difference between segment-level and packet-level time scales. Our segment-level CoS enforcement techniques provide a foundation for creating scalable managed OTT video delivery services

    Understanding the performance of Internet video over residential networks

    Get PDF
    Video streaming applications are now commonplace among home Internet users, who typically access the Internet using DSL or Cable technologies. However, the effect of these technologies on video performance, in terms of degradations in video quality, is not well understood. To enable continued deployment of applications with improved quality of experience for home users, it is essential to understand the nature of network impairments and develop means to overcome them. In this dissertation, I demonstrate the type of network conditions experienced by Internet video traffic, by presenting a new dataset of the packet level performance of real-time streaming to residential Internet users. Then, I use these packet level traces to evaluate the performance of commonly used models for packet loss simulation, and finding the models to be insufficient, present a new type of model that more accurately captures the loss behaviour. Finally, to demonstrate how a better understanding of the network can improve video quality in a real application scenario, I evaluate the performance of forward error correction schemes for Internet video using the measurements. I show that performance can be poor, devise a new metric to predict performance of error recovery from the characteristics of the input, and validate that the new packet loss model allows more realistic simulations. For the effective deployment of Internet video systems to users of residential access networks, a firm understanding of these networks is required. This dissertation provides insights into the packet level characteristics that can be expected from such networks, and techniques to realistically simulate their behaviour, promoting development of future video applications

    User behavior impact on IPTV platform performance

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2010As plataformas de IPTV têm sido introduzidas pelos prestadores de serviços de rede e de telecomunicações como forma de competir com os operadores de cabo e satélite, impulsionando a receita por utilizador e simultaneamente reduzindo, na medida do possível, os custos associados à exploração de infra-estrutura legada. Através da análise de métricas de desempenho relativas ao funcionamento interno de um sistema complexo procuramos revelar padrões e ocorrências isoladas que possam indicar a existência de problemas de desempenho. Usando esta informação, analisámos também as características da actividade dos utilizadores. A hipótese subjacente é que deve ser possível correlacionar o desempenho de um sistema ou sub-sistema tendo por base o comportamento dos utilizadores, mesmo que estes não interajam directamente com o referido sub-sistema. Adicionalmente, esta correlação deve seguir regras que possam ser usadas, por exemplo, para redefinir a arquitectura do sistema ou detectar anomalias proactivamente. Neste projecto analisámos métricas de desempenho dos Servidores de Distribuição e dos Servidores de VOD. De seguida estudámos os Registos de Actividade das STB de forma a caracterizar as acções dos utilizadores que têm maior influência no desempenho da plataforma de IPTV. Demonstrámos que estas análises em domínios distintos (utilizadores/STB e servidores internos) pode convergir e possibilitar a activação de alarmes quando a probabilidade de ocorrência de problemas de desempenho é elevada.IPTV platforms are being introduced by many network operators in order to compete with cable and satellite operators, increasing the average revenue per user, while taking advantage and reducing as much as possible the losses associated with legacy infra-structure. By analyzing performance metrics regarding the inner works of complex systems we aimed at unveiling patterns and identifying outlier occurrences that indicate actual or potential problems. Using such information we analyzed user activity information seeking to match the identified outlier patterns with characteristic user activity. The broader underlying hypothesis is that it is possible to correlate a system, or system’s performance problem based on the behavior of the end users even if they do not interact with it. Furthermore, we assume that this correlation follow rules which could thereafter be used for architecture redesign and proactive anomaly detection. In this project, we examined performance metrics of the Distribution Servers and VOD Servers. We then used STB activity logs to characterize the user actions with greater influence on the IPTV platform. We showed that these analyzes of multiple domains (user/STB and internal servers) can be merged enabling to raise alerts whenever there is high probability of occurring efficiency problems in the system

    Effective Multi-Connection Video Streaming Over WiMAX

    Get PDF
    The idea of multi-connection congestion control was originally applied to aggregate flows passing from computer cluster to cluster communicating over the public Internet. This paper considers the extension of multi-connection streaming to wired/wireless networks and in doing so reviews theoretical results for multi-connection streaming, including virtual multi-connections within a single physical connection. Streaming a single video over multiple TCP-Friendly Rate Control connections is a promising way of separately coping with both wireless channel losses and traffic congestion, without the need for cross-layer intervention or retransmission delay at the data-link layer. At the same time, the wireless channel is properly utilized, as throughput improves with an increasing number of connections. Nevertheless, over IEEE 802.16e (mobile WiMAX) tuning is needed to select the number of connections and the Time Division Duplex (TDD) frame size. The paper assesses the impact on video quality of packet drops due both to channel loss over a WiMAX access link and router buffer overflow across an all-IP network, consisting of broadband wireless access and core network. The paper also considers end-to-end delay and start-up delay when employing several connections. Results show that provided the TDD frame size is selected appropriately then using multiple connections preserves video quality and improves wireless channel utilization, with a minimal impact on end-to-end delay. As a trade-off, there is an increase in start-up delay arising from the need to avoid possible buffer underflow
    corecore