180 research outputs found

    Scaling up MIMO: Opportunities and Challenges with Very Large Arrays

    Full text link
    This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.Comment: Accepted for publication in the IEEE Signal Processing Magazine, October 201

    Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels under Limited Feedback

    Full text link
    In this paper, we study the sum rate performance of zero-forcing (ZF) and regularized ZF (RZF) precoding in large MISO broadcast systems under the assumptions of imperfect channel state information at the transmitter and per-user channel transmit correlation. Our analysis assumes that the number of transmit antennas MM and the number of single-antenna users KK are large while their ratio remains bounded. We derive deterministic approximations of the empirical signal-to-interference plus noise ratio (SINR) at the receivers, which are tight as M,KM,K\to\infty. In the course of this derivation, the per-user channel correlation model requires the development of a novel deterministic equivalent of the empirical Stieltjes transform of large dimensional random matrices with generalized variance profile. The deterministic SINR approximations enable us to solve various practical optimization problems. Under sum rate maximization, we derive (i) for RZF the optimal regularization parameter, (ii) for ZF the optimal number of users, (iii) for ZF and RZF the optimal power allocation scheme and (iv) the optimal amount of feedback in large FDD/TDD multi-user systems. Numerical simulations suggest that the deterministic approximations are accurate even for small M,KM,K.Comment: submitted to IEEE Transactions on Information Theor

    Secrecy Sum-Rates with Regularized Channel Inversion Precoding under Imperfect CSI at the Transmitter

    Full text link
    In this paper, we study the performance of regularized channel inversion precoding in MISO broadcast channels with confidential messages under imperfect channel state information at the transmitter (CSIT). We obtain an approximation for the achievable secrecy sum-rate which is almost surely exact as the number of transmit antennas and the number of users grow to infinity in a fixed ratio. Simulations prove this anaylsis accurate even for finite-size systems. For FDD systems, we determine how the CSIT error must scale with the SNR, and we derive the number of feedback bits required to ensure a constant high-SNR rate gap to the case with perfect CSIT. For TDD systems, we study the optimum amount of channel training that maximizes the high-SNR secrecy sum-rate.Comment: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2013. arXiv admin note: text overlap with arXiv:1304.585

    Linear Precoding Based on Polynomial Expansion: Large-Scale Multi-Cell MIMO Systems

    Full text link
    Large-scale MIMO systems can yield a substantial improvement in spectral efficiency for future communication systems. Due to the finer spatial resolution achieved by a huge number of antennas at the base stations, these systems have shown to be robust to inter-user interference and the use of linear precoding is asymptotically optimal. However, most precoding schemes exhibit high computational complexity as the system dimensions increase. For example, the near-optimal RZF requires the inversion of a large matrix. This motivated our companion paper, where we proposed to solve the issue in single-cell multi-user systems by approximating the matrix inverse by a truncated polynomial expansion (TPE), where the polynomial coefficients are optimized to maximize the system performance. We have shown that the proposed TPE precoding with a small number of coefficients reaches almost the performance of RZF but never exceeds it. In a realistic multi-cell scenario involving large-scale multi-user MIMO systems, the optimization of RZF precoding has thus far not been feasible. This is mainly attributed to the high complexity of the scenario and the non-linear impact of the necessary regularizing parameters. On the other hand, the scalar weights in TPE precoding give hope for possible throughput optimization. Following the same methodology as in the companion paper, we exploit random matrix theory to derive a deterministic expression for the asymptotic SINR for each user. We also provide an optimization algorithm to approximate the weights that maximize the network-wide weighted max-min fairness. The optimization weights can be used to mimic the user throughput distribution of RZF precoding. Using simulations, we compare the network throughput of the TPE precoding with that of the suboptimal RZF scheme and show that our scheme can achieve higher throughput using a TPE order of only 3
    corecore