1,647 research outputs found

    Modeling and Simulation of Molecular Communication Systems with a Reversible Adsorption Receiver

    Get PDF
    In this paper, we present an analytical model for the diffusive molecular communication (MC) system with a reversible adsorption receiver in a fluid environment. The widely used concentration shift keying (CSK) is considered for modulation. The time-varying spatial distribution of the information molecules under the reversible adsorption and desorption reaction at the surface of a receiver is analytically characterized. Based on the spatial distribution, we derive the net number of newly-adsorbed information molecules expected in any time duration. We further derive the number of newly-adsorbed molecules expected at the steady state to demonstrate the equilibrium concentration. Given the number of newly-adsorbed information molecules, the bit error probability of the proposed MC system is analytically approximated. Importantly, we present a simulation framework for the proposed model that accounts for the diffusion and reversible reaction. Simulation results show the accuracy of our derived expressions, and demonstrate the positive effect of the adsorption rate and the negative effect of the desorption rate on the error probability of reversible adsorption receiver with last transmit bit-1. Moreover, our analytical results simplify to the special cases of a full adsorption receiver and a partial adsorption receiver, both of which do not include desorption.Comment: 14 pages, 8 figures, 1 algorithm, submitte

    Molecular Signal Modeling of a Partially Counting Absorbing Spherical Receiver

    Get PDF
    To communicate at the nanoscale, researchers have proposed molecular communication as an energy-efficient solution. The drawback to this solution is that the histogram of the molecules' hitting times, which constitute the molecular signal at the receiver, has a heavy tail. Reducing the effects of this heavy tail, inter-symbol interference (ISI), has been the focus of most prior research. In this paper, a novel way of decreasing the ISI by defining a counting region on the spherical receiver's surface facing towards the transmitter node is proposed. The beneficial effect comes from the fact that the molecules received from the back lobe of the receiver are more likely to be coming through longer paths that contribute to ISI. In order to justify this idea, the joint distribution of the arrival molecules with respect to angle and time is derived. Using this distribution, the channel model function is approximated for the proposed system, i.e., the partially counting absorbing spherical receiver. After validating the channel model function, the characteristics of the molecular signal are investigated and improved performance is presented. Moreover, the optimal counting region in terms of bit error rate is found analytically.Comment: submitted to Transactions on Communication

    Channel Model of Molecular Communication via Diffusion in a Vessel-like Environment Considering a Partially Covering Receiver

    Full text link
    By considering potential health problems that a fully covering receiver may cause in vessel-like environments, the implementation of a partially covering receiver is needed. To this end, distribution of hitting location of messenger molecules (MM) is analyzed within the context of molecular communication via diffusion with the aim of channel modeling. The distribution of these MMs for a fully covering receiver is analyzed in two parts: angular and radial dimensions. For the angular distribution analysis, the receiver is divided into 180 slices to analyze the mean, standard deviation, and coefficient of variation of these slices. For the axial distance distribution analysis, Kolmogorov- Smirnov test is applied for different significance levels. Also, two different implementations of the reflection from the vessel surface (i.e., rollback and elastic reflection) are compared and mathematical representation of elastic reflection is given. The results show that MMs have tendency to spread uniformly beyond a certain ratio of the distance to the vessel radius. By utilizing the uniformity, we propose a channel model for the partially covering receiver in vessel-like environments and validate the proposed model by simulations
    • …
    corecore