2,219 research outputs found

    Nonclassical Light Generation from III-V and Group-IV Solid-State Cavity Quantum Systems

    Full text link
    In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indistinguishable photon streams with high purity and efficiency. Starting with the leading platform of InGaAs quantum dots in optical nanocavities, we review the physics of a single quantum emitter strongly coupled to a cavity. Furthermore, we propose a complete model for photon blockade and tunneling in III-V quantum dot cavity QED systems. Turning toward quantum emitters with small inhomogeneous broadening, we propose a direction for novel experiments for nonclassical light generation based on group-IV color-center systems. We present a model of a multi-emitter cavity QED platform, which features richer dressed-states ladder structures, and show how it can offer opportunities for studying new regimes of high-quality photon blockade.Comment: 64 pages, 32 figures, to appear as Chapter 3 in Advances in Atomic Molecular and Optical Physics, Vol. 6

    Proposal for an Optomechanical Traveling Wave Phonon-Photon Translator

    Get PDF
    In this article we describe a general optomechanical system for converting photons to phonons in an efficient, and reversible manner. We analyze classically and quantum mechanically the conversion process and proceed to a more concrete description of a phonon-photon translator formed from coupled photonic and phononic crystal planar circuits. Applications of the phonon-photon translator to RF-microwave photonics and circuit QED, including proposals utilizing this system for optical wavelength conversion, long-lived quantum memory and state transfer from optical to superconducting qubits are considered.Comment: 32 pages, 11 figure

    Nano-electronic Simulation Software (NESS): a flexible nano-device simulation platform

    Get PDF
    The aim of this paper is to present a flexible and open-source multi-scale simulation software which has been developed by the Device Modelling Group at the University of Glasgow to study the charge transport in contemporary ultra-scaled Nano-CMOS devices. The name of this new simulation environment is Nano-electronic Simulation Software (NESS). Overall NESS is designed to be flexible, easy to use and extendable. Its main two modules are the structure generator and the numerical solvers module. The structure generator creates the geometry of the devices, defines the materials in each region of the simulation domain and includes eventually sources of statistical variability. The charge transport models and corresponding equations are implemented within the numerical solvers module and solved self-consistently with Poisson equation. Currently, NESS contains a drift–diffusion, Kubo–Greenwood, and non-equilibrium Green’s function (NEGF) solvers. The NEGF solver is the most important transport solver in the current version of NESS. Therefore, this paper is primarily focused on the description of the NEGF methodology and theory. It also provides comparison with the rest of the transport solvers implemented in NESS. The NEGF module in NESS can solve transport problems in the ballistic limit or including electron–phonon scattering. It also contains the Flietner model to compute the band-to-band tunneling current in heterostructures with a direct band gap. Both the structure generator and solvers are linked in NESS to supporting modules such as effective mass extractor and materials database. Simulation results are outputted in text or vtk format in order to be easily visualized and analyzed using 2D and 3D plots. The ultimate goal is for NESS to become open-source, flexible and easy to use TCAD simulation environment which can be used by researchers in both academia and industry and will facilitate collaborative software development

    Advanced III-V / Si nano-scale transistors and contacts: Modeling and analysis

    Get PDF
    The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and strained-Si in planar FETs and triple-gate non-planar FinFETs. (2) to demonstrate whether or not these technologies are viable alternatives to Si and conventional planar FETs. The simulation results indicate that III-V FETs do not outperform Si FETs in the ballistic transport regime, and triple-gate FinFETs surely represent the best architecture for sub-15nm gate contacts, independently from the choice of channel material. ^ This work also proves that the contact resistance becomes a limiting factor of device performance as it takes larger fraction of the total on-state resistance. Hence, contact resistance must be reduced to meet the next ITRS requirements. However, from a modeling point of view, the understanding of the contacts still remains limited due to its size and multiple associated scattering effects, while the intrinsic device performance can be projected. Therefore, a precise theoretical modeling is required to advance optimized contact design to improve overall device performance. In this work, various factors of the contact resistances are investigated within realistic contact-to-channel structure of III-V quantum well field-effect transistors (QWFET). The key finding is that the contact-to-channel resistance is mainly caused by structural reasons: 1) barriers between multiple layers in the contact region 2) Schottky barrier between metal and contact pad. These two barriers work as bottleneck of the system conductance. The extracted contact resistance matches with the experimental value. The approximation of contact resistance from quantum transport simulation can be very useful to guide better contact designs of the future technology nodes. ^ The theoretical modeling of these nano-scale devices demands a proper treatment of quantum effects such as the energy-level quantization caused by strong quantum confinement of electrons and band structure non-parabolicity. 2-D and 3-D quantum transport simulator that solves non-equilibrium Green\u27s functions (NEGF) transport and Poisson equations self-consistently within a real-space effective mass approximation. The sp3d5s* empirical tight-binding method is employed to include non-parabolicity to obtain more accurate effective masses in confined nano-structures. The accomplishment of this work would aid in designing, engineering and manufacturing nano-scale devices, as well as next-generation microchips and other electronics with nano-scale features

    Phonon routing in integrated optomechanical cavity-waveguide systems

    Get PDF
    The mechanical properties of light have found widespread use in the manipulation of gas-phase atoms and ions, helping create new states of matter and realize complex quantum interactions. The field of cavity-optomechanics strives to scale this interaction to much larger, even human-sized mechanical objects. Going beyond the canonical Fabry-Perot cavity with a movable mirror, here we explore a new paradigm in which multiple cavity-optomechanical elements are wired together to form optomechanical circuits. Using a pair of optomechanical cavities coupled together via a phonon waveguide we demonstrate a tunable delay and filter for microwave-over-optical signal processing. In addition, we realize a tight-binding form of mechanical coupling between distant optomechanical cavities, leading to direct phonon exchange without dissipation in the waveguide. These measurements indicate the feasibility of phonon-routing based information processing in optomechanical crystal circuitry, and further, to the possibility of realizing topological phases of photons and phonons in optomechanical cavity lattices.Comment: 16 pages, 7 figure

    Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions

    Get PDF
    Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments. The current-voltage characteristics are in agreement with calculations of tunneling conductance through asymmetric barriers. We fabricate a GNR heterojunctions based sensor and demonstrate greatly improved sensitivity to adsorbates compared to graphene based sensors. This is achieved via modulation of the GNR heterojunction tunneling barriers by adsorbates
    corecore