25,173 research outputs found

    Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Get PDF
    Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Mobile Satellite (LMS) channel model [1]-[4], developed at the German Aerospace Center (DLR). The DLR LMS channel model is widely used for simulating the positioning accuracy of mobile satellite navigation receivers in urban outdoor scenarios. The main objective of this paper is to present a comprehensive analysis of some of the most promising techniques with the DLR LMS channel model in varying multipath scenarios. Four multipath mitigation techniques are chosen herein for performance comparison, namely, the narrow Early-Minus-Late (nEML), the High Resolution Correlator, the C/N0-based two stage delay tracking technique, and the Reduced Search Space Maximum Likelihood (RSSML) delay estimator. The first two techniques are the most popular and traditional ones used in nowadays GNSS receivers, whereas the later two techniques are comparatively new and are advanced techniques, recently proposed by the authors. In addition, the implementation of the RSSML is optimized here for a narrow-bandwidth receiver configuration in the sense that it now requires a significantly less number of correlators and memory than its original implementation. The simulation results show that the reduced-complexity RSSML achieves the best multipath mitigation performance in moderate-to-good carrier-to-noise density ratio with the DLR LMS channel model in varying multipath scenarios

    Modeling of the Land Mobile Satellite Channel considering the Terminal’s Driving Direction

    Get PDF
    A precise characterization of the Land Mobile Satellite (LMS) channel, that is, the channel between a satellite and a mobile terminal, is of crucial importance while designing a satellite-based communication system. State-of-the-art statistical LMS channel models offer the advantage of requiring only a few input parameters, which include the environment type and the elevation angle of the satellite. However, the azimuth angle relative to the driving direction of the mobile terminal is usually ignored, as its proper modeling requires either an extensive measurement campaign or a significant effort from the user, as a precise geometrical description of the scenario is required. In this contribution we show that the impact of the driving direction on the channel statistics is not negligible and requires to be modeled explicitly. Moreover, we propose a statistical LMS channel model whose parameters are obtained via an image-based state estimation method. The image-based method is verified by a comparison with measured radio frequency signal levels. The proposed method allows obtaining a complete statistical description of the channel for arbitrary elevation and azimuth angles

    Characterisation of the LMS propagation channel at L- and S-bands: Narrowband experimental data and channel modelling

    Get PDF
    During the period 1983-1992 the European Space Agency (ESA) carried out several experimental campaigns to investigate the propagation impairments of the Land Mobile Satellite (LMS) communication channel. A substantial amount of data covering quite a large range of elevation angles, environments, and frequencies was obtained. Results from the data analyses are currently used for system planning and design applications within the framework of the future ESA LMS projects. This comprehensive experimental data base is presently utilized also for channel modeling purposes and preliminary results are given. Cumulative Distribution Functions (PDF) and Duration of Fades (DoF) statistics at different elevation angles and environments were also included

    WiMAX HAPS-based downlink performance employing geometrical and statistical propagation channel characteristics

    Get PDF
    The evolution to a well-expected technology in wireless-communications maturity is in progress. Complementary applications are being suggested for such purposes, which might be possibly effective from the already ongoing research on high-altitude-platform systems. Herein, we introduce a HAPS-based system for delivering broadband communications intended to be operational at L band. A physical-statistical channel model for the HAPSto-fixed-terrestrial terminal provision is derived from urban geometrical radio-coverage considerations with a simple diffraction theory. The stratospheric broadband channel model is fulfi lled with the two channel-state situations related to the direct and specular rays, plus multipath. The fi rst state consists of predicting the performance for which the line-of-sight path can exist between HAPS and the still terminal at street level. The second channel state refers to modeling the statistical fading characteristics for the shadowing condition. The system implementation is approximated and analyzed by performing intensive simulation-aided modeling. The proposed hypotheses use empirical data derived from land-mobile-satellite communication-system records. Because the systems require robust, reliable, and future standardization results, IEEE 802.16ℱ-2004 PHYlayer technical specifi cations are used to accomplish the WiMAX HAPS-based downlink performance evaluation.Peer ReviewedPostprint (published version

    Prediction of performance of the DVB-SH system relying on mutual information

    Get PDF
    DVB-SH (Digital Video Broadcasting-Satellite Handled) is a broadcasting standard dedicated to hybrid broadcasting systems combining a satellite and a terrestrial part. On the satellite part, dedicated interleaving and time slicing mechanisms are proposed to mitigate the effects of Land Mobile Satellite (LMS) channel, based on a convolutional interleaver. Depending on the parameters of this interleaver, this mechanism enables to split in time a codeword on duration from 100 ms to about 30s. This mechanism signi?cantly improves the error recovery performance of the code but in literature, exact evaluation at system level of this improvement is missing. The objective of this paper is to propose a prediction method compatible with fast simulations, to quantitatively evaluate the system performance in terms of Packet Error Rate (PER). The main dif?culty is to evaluate the decoding probability of a codeword submitted to several levels of attenuation. The method we propose consists in using as metric the Mutual Information (MI) between coded bit at the emitter side and the received symbol. It is shown that, by averaging the MI over the codeword and by using the decoding performance function g such that PER=g(MI)determined on the Gaussian channel, we can signi?cantly improve the precision of the prediction compared to the two other methods based on SNR and Bit Error Rate (BER). We evaluated these methods on three arti?cial channels where each codeword is transmitted with three or four different levels of attenuations. The prediction error of the SNR-based (resp. the input BER-based) method varies from 0.5 to 1.7 dB (resp. from 0.7 to 1.2 dB) instead of the MI-based method achieves a precision in the order of 0.1 dB in the three cases. We then evaluate this method on real LMS channels with various DVB-SH interleavers and show that the instantaneous PER can also be predicted with high accuracy

    IP-Level Satellite Link Emulation with KauNet

    Get PDF
    Distributed applications and transport protocols communicating over a satellite link may react very strongly to conditions specific to that kind of link. Providing a evaluation framework to allow tests of real implementations of such software in that context is quite a challenging task. In this paper we demonstrate how the use of the general-purpose KauNet IP-level emulator combined with satellite-specific packet loss patterns can help by reproducing losses and delays experienced on a satellite link with a simple Ethernet LAN setup. Such a platform is an essential tool for developers performing continuous testing as they provide new features for e.g. video codecs or transport-level software like DCCP and its congestion control components

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    NASA's mobile satellite development program

    Get PDF
    A Mobile Satellite System (MSS) will provide data and voice communications over a vast geographical area to a large population of mobile users. A technical overview is given of the extensive research and development studies and development performed under NASA's mobile satellite program (MSAT-X) in support of the introduction of a U.S. MSS. The critical technologies necessary to enable such a system are emphasized: vehicle antennas, modulation and coding, speech coders, networking and propagation characterization. Also proposed is a first, and future generation MSS architecture based upon realized ground segment equipment and advanced space segment studies
    • 

    corecore