1,032 research outputs found

    Channel impulse response length and noise variance estimation for OFDM systems with adaptive guard interval

    Get PDF
    A new algorithm estimating channel impulse response (CIR) length and noise variance for orthogonal frequency-division multiplexing (OFDM) systems with adaptive guard interval (GI) length is proposed. To estimate the CIR length and the noise variance, the different statistical characteristics of the additive noise and the mobile radio channels are exploited. This difference is due to the fact that the variance of the channel coefficients depends on the position within the CIR, whereas the noise variance of each estimated channel tap is equal. Moreover, the channel can vary rapidly, but its length changes more slowly than its coefficients. An auxiliary function is established to distinguish these characteristics. The CIR length and the noise variance are estimated by varying the parameters of this function. The proposed method provides reliable information of the estimated CIR length and the noise variance even at signal-to-noise ratio (SNR) of 0 dB. This information can be applied to an OFDM system with adaptive GI length, where the length of the GI is adapted to the current length of the CIR. The length of the GI can therefore be optimized. Consequently, the spectral efficiency of the system is increased

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Classical and Bayesian Linear Data Estimators for Unique Word OFDM

    Full text link
    Unique word - orthogonal frequency division multiplexing (UW-OFDM) is a novel OFDM signaling concept, where the guard interval is built of a deterministic sequence - the so-called unique word - instead of the conventional random cyclic prefix. In contrast to previous attempts with deterministic sequences in the guard interval the addressed UW-OFDM signaling approach introduces correlations between the subcarrier symbols, which can be exploited by the receiver in order to improve the bit error ratio performance. In this paper we develop several linear data estimators specifically designed for UW-OFDM, some based on classical and some based on Bayesian estimation theory. Furthermore, we derive complexity optimized versions of these estimators, and we study their individual complex multiplication count in detail. Finally, we evaluate the estimators' performance for the additive white Gaussian noise channel as well as for selected indoor multipath channel scenarios.Comment: Preprint, 13 page

    Blind equalization and fading channel signal recovery of OFDM modulation

    Get PDF
    Algorithms for blind equalization and data recovery of orthogonal frequency-division multiplexed (OFDM) signals transmitted through fading channels are implemented and simulated in this thesis. The channel is estimated without knowledge of the transmitted sequence (i.e., blindly) using a least mean squares (LMS) adaptive filter and filter bank precoders. This method was used to estimate channel characteristics using both binary and quadrature phase-shift keying signals. Additionally, the method was analyzed for robustness with a poor initial estimate of channel characteristics, with the addition of white Gaussian noise to the signal, and with non-stationary channel conditions. In addition, it is shown that the proposed method is particularly suited in situations with deep fading channels, where some of the subcarriers have a very low SNR. Simulations for both aspects of this thesis were conducted using MATLAB, and the results are presented.http://archive.org/details/blindequalizatio109455740Approved for public release; distribution is unlimited

    MIMO-UFMC Transceiver Schemes for Millimeter Wave Wireless Communications

    Full text link
    The UFMC modulation is among the most considered solutions for the realization of beyond-OFDM air interfaces for future wireless networks. This paper focuses on the design and analysis of an UFMC transceiver equipped with multiple antennas and operating at millimeter wave carrier frequencies. The paper provides the full mathematical model of a MIMO-UFMC transceiver, taking into account the presence of hybrid analog/digital beamformers at both ends of the communication links. Then, several detection structures are proposed, both for the case of single-packet isolated transmission, and for the case of multiple-packet continuous transmission. In the latter situation, the paper also considers the case in which no guard time among adjacent packets is inserted, trading off an increased level of interference with higher values of spectral efficiency. At the analysis stage, the several considered detection structures and transmission schemes are compared in terms of bit-error-rate, root-mean-square-error, and system throughput. The numerical results show that the proposed transceiver algorithms are effective and that the linear MMSE data detector is capable of well managing the increased interference brought by the removal of guard times among consecutive packets, thus yielding throughput gains of about 10 - 13 %\%. The effect of phase noise at the receiver is also numerically assessed, and it is shown that the recursive implementation of the linear MMSE exhibits some degree of robustness against this disturbance

    Adaptive spatial mode of space-time and spacefrequency OFDM system over fading channels

    Get PDF
    In this paper we present a 2 transmit 1 receive (1 Tx : 1 Rx) adaptive spatial mode (ASM) of space-time (ST) and space-frequency (SF) orthogonal frequency division multiplexing (OFDM). At low signal to noise ratio (SNR) we employ ST-OFDM and switch to SF-OFDM at a certain SNR threshold. We determine this threshold from the intersection of individual performance curves. Results show a gain of 9 dB (at a bit error rate of 10-3) is achieved by employing adaptive spatial mode compared to a fixed ST-OFDM, almost 6 dB to fixed SF-OFDM, 4 dB to Coded ST-OFDM and 2 dB to a fixed coded SF-OFDM, at a delay spread of 700 ns
    • …
    corecore