184 research outputs found

    Channel estimation for massive MIMO TDD systems assuming pilot contamination and frequency selective fading

    Get PDF
    Channel estimation is crucial for massive multiple-input multiple-output (MIMO) systems to scale up multi-user MIMO, providing significant improvement in spectral and energy efficiency. In this paper, we present a simple and practical channel estimator for multipath multi-cell massive MIMO time division duplex systems with pilot contamination, which poses significant challenges to channel estimation. The proposed estimator addresses performance under moderate to strong pilot contamination without previous knowledge of the inter-cell large-scale fading coefficients and noise power. Additionally, we derive and assess an approximate analytical mean square error (MSE) expression for the proposed channel estimator. We show through simulations that the proposed estimator performs asymptotically as well as the minimum MSE estimator with respect to the number of antennas and multipath coefficients

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Channel estimation for massive MIMO TDD mystems assuming pilot contamination and frequency selective fading

    Get PDF
    Channel estimation is crucial for massive multiple-input multiple-output (MIMO) systems to scale up multi-user MIMO, providing significant improvement in spectral and energy efficiency. In this paper, we present a simple and practical channel estimator for multipath multi-cell massive MIMO time division duplex systems with pilot contamination, which poses significant challenges to channel estimation. The proposed estimator addresses performance under moderate to strong pilot contamination without previous knowledge of the inter-cell large-scale fading coefficients and noise power. Additionally, we derive and assess an approximate analytical mean square error (MSE) expression for the proposed channel estimator. We show through simulations that the proposed estimator performs asymptotically as well as the minimum MSE estimator with respect to the number of antennas and multipath coefficients5177331774

    Beamspace Aware Adaptive Channel Estimation for Single-Carrier Time-varying Massive MIMO Channels

    Full text link
    In this paper, the problem of sequential beam construction and adaptive channel estimation based on reduced rank (RR) Kalman filtering for frequency-selective massive multiple-input multiple-output (MIMO) systems employing single-carrier (SC) in time division duplex (TDD) mode are considered. In two-stage beamforming, a new algorithm for statistical pre-beamformer design is proposed for spatially correlated time-varying wideband MIMO channels under the assumption that the channel is a stationary Gauss-Markov random process. The proposed algorithm yields a nearly optimal pre-beamformer whose beam pattern is designed sequentially with low complexity by taking the user-grouping into account, and exploiting the properties of Kalman filtering and associated prediction error covariance matrices. The resulting design, based on the second order statistical properties of the channel, generates beamspace on which the RR Kalman estimator can be realized as accurately as possible. It is observed that the adaptive channel estimation technique together with the proposed sequential beamspace construction shows remarkable robustness to the pilot interference. This comes with significant reduction in both pilot overhead and dimension of the pre-beamformer lowering both hardware complexity and power consumption.Comment: 7 pages, 3 figures, accepted by IEEE ICC 2017 Wireless Communications Symposiu

    Channel estimation for massive MIMO TDD systems assuming pilot contamination and flat fading

    Get PDF
    Channel estimation is crucial for massive massive multiple-input multiple-output (MIMO) systems to scale up multi-user (MU) MIMO, providing great improvement in spectral and energy efficiency. This paper presents a simple and practical channel estimator for multi-cell MU massive MIMO time division duplex (TDD) systems with pilot contamination in flat Rayleigh fading channels, i.e., the gains of the channels follow the Rayleigh distribution. We also assume uncorrelated antennas. The proposed estimator addresses performance under moderate to strong pilot contamination without previous knowledge of the cross-cell large-scale channel coefficients. This estimator performs asymptotically as well as the minimum mean square error (MMSE) estimator with respect to the number of antennas. An approximate analytical mean square error (MSE) expression is also derived for the proposed estimator

    Channel estimation for massive MIMO TDD systems assuming pilot contamination and flat fading

    Get PDF
    Channel estimation is crucial for massive massive multiple-input multiple-output (MIMO) systems to scale up multi-user (MU) MIMO, providing great improvement in spectral and energy efficiency. This paper presents a simple and practical channel estimator for multi-cell MU massive MIMO time division duplex (TDD) systems with pilot contamination in flat Rayleigh fading channels, i.e., the gains of the channels follow the Rayleigh distribution. We also assume uncorrelated antennas. The proposed estimator addresses performance under moderate to strong pilot contamination without previous knowledge of the cross-cell large-scale channel coefficients. This estimator performs asymptotically as well as the minimum mean square error (MMSE) estimator with respect to the number of antennas. An approximate analytical mean square error (MSE) expression is also derived for the proposed estimator201
    corecore