418 research outputs found

    Channel Estimation for Ambient Backscatter Communication Systems with Massive-Antenna Reader

    Get PDF
    Ambient backscatter, an emerging green communication technology, has aroused great interest from both academia and industry. One open problem for ambient backscatter communication (AmBC) systems is channel estimation for a massive-antenna reader. In this paper, we focus on channel estimation problem in AmBC systems with uniform linear array (ULA) at the reader which consists of large number of antennas. We first design a two-step method to jointly estimate channel gains and direction of arrivals (DoAs), and then refine the estimates through angular rotation. Additionally, Cramer-Rao lower bounds (CRLBs) are derived for both the modulus of the channel gain and the DoA estimates. Simulations are then provided to validate the analysis, and to show the efficiency of the proposed approach.Comment: 5 figures, submitted to IEEE Transactions on Vehicular Technology, 29 March, 201

    Sum Throughput Maximization in Multi-Tag Backscattering to Multiantenna Reader

    Full text link
    Backscatter communication (BSC) is being realized as the core technology for pervasive sustainable Internet-of-Things applications. However, owing to the resource-limitations of passive tags, the efficient usage of multiple antennas at the reader is essential for both downlink excitation and uplink detection. This work targets at maximizing the achievable sum-backscattered-throughput by jointly optimizing the transceiver (TRX) design at the reader and backscattering coefficients (BC) at the tags. Since, this joint problem is nonconvex, we first present individually-optimal designs for the TRX and BC. We show that with precoder and {combiner} designs at the reader respectively targeting downlink energy beamforming and uplink Wiener filtering operations, the BC optimization at tags can be reduced to a binary power control problem. Next, the asymptotically-optimal joint-TRX-BC designs are proposed for both low and high signal-to-noise-ratio regimes. Based on these developments, an iterative low-complexity algorithm is proposed to yield an efficient jointly-suboptimal design. Thereafter, we discuss the practical utility of the proposed designs to other application settings like wireless powered communication networks and BSC with imperfect channel state information. Lastly, selected numerical results, validating the analysis and shedding novel insights, demonstrate that the proposed designs can yield significant enhancement in the sum-backscattered throughput over existing benchmarks.Comment: 17 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Time-Spread Pilot-Based Channel Estimation for Backscatter Networks

    Full text link
    Current backscatter channel estimators employ an inefficient silent pilot transmission protocol, where tags alternate between silent and active states. To enhance performance, we propose a novel approach where tags remain active simultaneously throughout the entire training phase. This enables a one-shot estimation of both the direct and cascaded channels and accommodates various backscatter network configurations. We derive the conditions for optimal pilot sequences and also establish that the minimum variance unbiased (MVU) estimator attains the Cramer-Rao lower bound. Next, we propose new pilot designs to avoid pilot contamination. We then present several linear estimation methods, including least square (LS), scaled LS, and linear minimum mean square error (MMSE), to evaluate the performance of our proposed scheme. We also derive the analytical MMSE estimator using our proposed pilot designs. Furthermore, we adapt our method for cellular-based passive Internet-of-Things (IoT) networks with multiple tags and cellular users. Extensive numerical results and simulations are provided to validate the effectiveness of our approach. Notably, at least 10 dBm and 12 dBm power savings compared to the prior art are achieved when estimating the direct and cascaded channels. These findings underscore the practical benefits and superiority of our proposed technique

    Optimal Channel Estimation for Reciprocity-Based Backscattering with a Full-Duplex MIMO Reader

    Full text link
    Backscatter communication (BSC) technology can enable ubiquitous deployment of low-cost sustainable wireless devices. In this work we investigate the efficacy of a full-duplex multiple-input-multiple-output (MIMO) reader for enhancing the limited communication range of monostatic BSC systems. As this performance is strongly influenced by the channel estimation (CE) quality, we first derive a novel least-squares estimator for the forward and backward links between the reader and the tag, assuming that reciprocity holds and K orthogonal pilots are transmitted from the first K antennas of an N antenna reader. We also obtain the corresponding linear minimum-mean square-error estimate for the backscattered channel. After defining the transceiver design at the reader using these estimates, we jointly optimize the number of orthogonal pilots and energy allocation for the CE and information decoding phases to maximize the average backscattered signal-to-noise ratio (SNR) for efficiently decoding the tag's messages. The unimodality of this SNR in optimization variables along with a tight analytical approximation for the jointly global optimal design is also discoursed. Lastly, the selected numerical results validate the proposed analysis, present key insights into the optimal resource utilization at reader, and quantify the achievable gains over the benchmark schemes.Comment: accepted for publication in IEEE Transactions on Signal Processing, 16 pages, 15 figures, 1 tabl
    corecore