2,255 research outputs found

    Multiple-Symbol Differential Sphere Detection Aided Successive Relaying in the Cooperative DS-CDMA Uplink

    No full text
    The conventional amplify-and-forward cooperative system is capable of achieving a superior performance with the aid of Multiple-Symbol Differential Sphere Detection (MSDSD), when compared to conventional differential detection (CDD) for transmission over time-selective channels. However, the conventional broadcast/cooperative twin-phase based relaying protocol encounters a 50% throughput loss imposed by half-duplex relaying. For combating this problem, in this paper, we create a MSDSD aided successive relaying based cooperative DS-CDMA system. We demonstrate that given the target BER of 10?4 , a diversity gain of up to 10 dB is achieved over the benchmark schemes employed without a throughput loss

    Hybrid Iterative Multiuser Detection for Channel Coded Space Division Multiple Access OFDM Systems

    No full text
    Space division multiple access (SDMA) aided orthogonal frequency division multiplexing (OFDM) systems assisted by efficient multiuser detection (MUD) techniques have recently attracted intensive research interests. The maximum likelihood detection (MLD) arrangement was found to attain the best performance, although this was achieved at the cost of a computational complexity, which increases exponentially both with the number of users and with the number of bits per symbol transmitted by higher order modulation schemes. By contrast, the minimum mean-square error (MMSE) SDMA-MUD exhibits a lower complexity at the cost of a performance loss. Forward error correction (FEC) schemes such as, for example, turbo trellis coded modulation (TTCM), may be efficiently combined with SDMA-OFDM systems for the sake of improving the achievable performance. Genetic algorithm (GA) based multiuser detection techniques have been shown to provide a good performance in MUD-aided code division multiple access (CDMA) systems. In this contribution, a GA-aided MMSE MUD is proposed for employment in a TTCM assisted SDMA-OFDM system, which is capable of achieving a similar performance to that attained by its optimum MLD-aided counterpart at a significantly lower complexity, especially at high user loads. Moreover, when the proposed biased Q-function based mutation (BQM) assisted iterative GA (IGA) MUD is employed, the GA-aided system’s performance can be further improved, for example, by reducing the bit error ratio (BER) measured at 3 dB by about five orders of magnitude in comparison to the TTCM assisted MMSE-SDMA-OFDM benchmarker system, while still maintaining modest complexity

    Channel Estimation And Multiuser Detection In Asynchronous Satellite Communications

    Full text link
    In this paper, we propose a new method of channel estimation for asynchronous additive white Gaussian noise channels in satellite communications. This method is based on signals correlation and multiuser interference cancellation which adopts a successive structure. Propagation delays and signals amplitudes are jointly estimated in order to be used for data detection at the receiver. As, a multiuser detector, a single stage successive interference cancellation (SIC) architecture is analyzed and integrated to the channel estimation technique and the whole system is evaluated. The satellite access method adopted is the direct sequence code division multiple access (DS CDMA) one. To evaluate the channel estimation and the detection technique, we have simulated a satellite uplink with an asynchronous multiuser access.Comment: 14 pages, 9 figure

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony

    No full text
    Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment

    Performance Improvement of QPSK Signal Predetection EGC Diversity Receiver

    Get PDF
    This paper proposes a modification of quadrature phase-shift-keying (QPSK) signal diversity reception with predetection equal gain combiner (EGC). The EGC combining is realized by using the constant modulus algorithm (CMA). Carrier synchronization is performed by the phase locked loop (PLL). Comparative analysis of the modified and ordinary diversity receiver in the presence of carrier frequency offset in the additive white Gaussian noise (AWGN) channel, as well as in Rician fading channel is shown. The proposed diversity receiver allows significant frequency offset compared to the diversity receiver that uses only PLL, and the error probability of the proposed receiver is very close to the error probability of the receiver with only PLL and zero frequency offset. The functionality of the proposed diversity receiver, as well as its properties is experimentally verified on a system based on universal software radio peripheral (USRP) hardware. The performed comparison confirms the expected behavior of the system
    corecore