2,553 research outputs found

    Non-coherent detection for ultraviolet communications with inter-symbol interference

    Get PDF
    Ultraviolet communication (UVC) serves as a promising supplement to share the responsibility for the overloads in conventional wireless communication systems. One challenge for UVC lies in inter-symbol-interference (ISI), which combined with the ambient noise, contaminates the received signals and thereby deteriorates the communication accuracy. Existing coherent signal detection schemes (e.g. maximum likelihood sequence detection, MLSD) require channel state information (CSI) to compensate the channel ISI effect, thereby falling into either a long overhead and large computational complexity, or poor CSI acquisition that further hinders the detection performance. Non-coherent schemes for UVC, although capable of reducing the complexity, cannot provide high detection accuracy in the face of ISI. In this work, we propose a novel non-coherent paradigm via the exploration of the UV signal features that are insensitive to the ISI. By optimally weighting and combining the extracted features to minimize the bit error rate (BER), the optimally-weighted non-coherent detection (OWNCD) is proposed, which converts the signal detection with ISI into a binary detection framework with a heuristic decision threshold. As such, the proposed OWNCD avoids the complex CSI estimation and guarantees the detection accuracy. Compared to the state-of-the-art MLSD in the cases of static and time-varying CSI, the proposed OWNCD can gain ∌1 dB and 8 dB in signal-to-noise-ratio (SNR) at the 7% overhead FEC limit (BER of 4.5×10 −3 , respectively, and can also reduce the computational complexity by 4 order of magnitud

    MIMO Underwater Visible Light Communications: Comprehensive Channel Study, Performance Analysis, and Multiple-Symbol Detection

    Full text link
    In this paper, we analytically study the bit error rate (BER) performance of underwater visible light communication (UVLC) systems with binary pulse position modulation (BPPM). We simulate the channel fading-free impulse response (FFIR) based on Monte Carlo numerical method to take into account the absorption and scattering effects. Additionally, to characterize turbulence effects, we multiply the aforementioned FFIR by a fading coefficient which for weak oceanic turbulence can be modeled as a lognormal random variable (RV). Moreover, to mitigate turbulence effects, we employ multiple transmitters and/or receivers, i.e., spatial diversity technique over UVLC links. Closed-form expressions for the system BER are provided, when equal gain combiner (EGC) is employed at the receiver side, thanks to Gauss-Hermite quadrature formula and approximation to the sum of lognormal RVs. We further apply saddle-point approximation, an accurate photon-counting-based method, to evaluate the system BER in the presence of shot noise. Both laser-based collimated and light emitting diode (LED)-based diffusive links are investigated. Since multiple-scattering effect of UVLC channels on the propagating photons causes considerable inter-symbol interference (ISI), especially for diffusive channels, we also obtain the optimum multiple-symbol detection (MSD) algorithm to significantly alleviate ISI effects and improve the system performance. Our numerical analysis indicates good matches between the analytical and photon-counting results implying the negligibility of signal-dependent shot noise, and also between analytical results and numerical simulations confirming the accuracy of our derived closed-form expressions for the system BER. Besides, our results show that spatial diversity significantly mitigates fading impairments while MSD considerably alleviates ISI deteriorations

    Optical wireless scattering channel estimation for photon-counting and photomultiplier tube receivers

    No full text
    Channel estimation is conceived for optical wireless scattering channels associated with laser diode transmitters and photon-counting/photomultiplier tube receivers. The proposed channel estimation approach consists of two stages, namely, of the estimation of the channel tap second-order moments followed by the estimation of the channel taps based on the estimate of second-order moments. In the first stage, we provide the general framework of the moment estimation complemented by the conception of an estimation approach based on a sparse pilot structure, as well as by the analysis of the estimation error. We also propose a novel sparse pilot design as well as the associated low-complexity channel estimation, and prove the optimality of the proposed channel estimation. In the second stage, we conceive the associated channel tap estimation based on the eigenvalue decomposition of the matrix of estimated second-order moments, and analyze the associated performance. It is shown that as the length of the pilot sequence tends to infinity, the probability of having an estimation distortion above a certain threshold can be reduced arbitrarily small. Simulation results show that the proposed sparse pilot sequence can lead to a smaller estimation error than the pilot design using random 0-1 bits

    BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence

    Get PDF
    Free-space optical communications (FSO) propagated over a clear atmosphere suffers from irradiance fluctuation caused by small but random atmospheric temperature fluctuations. This results in decreased signal-to-noise ratio (SNR) and consequently impaired performance. In this paper, the error performance of the FSO using a subcarrier intensity modulation (SIM) based on a binary phase shift keying (BPSK) scheme in a clear but turbulent atmosphere is presented. To evaluate the system error performance in turbulence regimes from weak to strong, the probability density function (pdf) of the received irradiance after traversing the atmosphere is modelled using the gamma-gamma distribution while the negative exponential distribution is used to model turbulence in the saturation region and beyond. The effect of turbulence induced irradiance fluctuation is mitigated using spatial diversity at the receiver. With reference to the single photodetector case, up to 12 dB gain in the electrical SNR is predicted with two direct detection PIN photodetectors in strong atmospheric turbulence
    • 

    corecore