1,301 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots

    Full text link
    We consider a massive MU-MIMO downlink time-division duplex system where a base station (BS) equipped with many antennas serves several single-antenna users in the same time-frequency resource. We assume that the BS uses linear precoding for the transmission. To reliably decode the signals transmitted from the BS, each user should have an estimate of its channel. In this work, we consider an efficient channel estimation scheme to acquire CSI at each user, called beamforming training scheme. With the beamforming training scheme, the BS precodes the pilot sequences and forwards to all users. Then, based on the received pilots, each user uses minimum mean-square error channel estimation to estimate the effective channel gains. The channel estimation overhead of this scheme does not depend on the number of BS antennas, and is only proportional to the number of users. We then derive a lower bound on the capacity for maximum-ratio transmission and zero-forcing precoding techniques which enables us to evaluate the spectral efficiency taking into account the spectral efficiency loss associated with the transmission of the downlink pilots. Comparing with previous work where each user uses only the statistical channel properties to decode the transmitted signals, we see that the proposed beamforming training scheme is preferable for moderate and low-mobility environments.Comment: Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, Illinois, Oct. 201

    Secrecy Sum-Rates with Regularized Channel Inversion Precoding under Imperfect CSI at the Transmitter

    Full text link
    In this paper, we study the performance of regularized channel inversion precoding in MISO broadcast channels with confidential messages under imperfect channel state information at the transmitter (CSIT). We obtain an approximation for the achievable secrecy sum-rate which is almost surely exact as the number of transmit antennas and the number of users grow to infinity in a fixed ratio. Simulations prove this anaylsis accurate even for finite-size systems. For FDD systems, we determine how the CSIT error must scale with the SNR, and we derive the number of feedback bits required to ensure a constant high-SNR rate gap to the case with perfect CSIT. For TDD systems, we study the optimum amount of channel training that maximizes the high-SNR secrecy sum-rate.Comment: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2013. arXiv admin note: text overlap with arXiv:1304.585

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Massive MIMO: How many antennas do we need?

    Full text link
    We consider a multicell MIMO uplink channel where each base station (BS) is equipped with a large number of antennas N. The BSs are assumed to estimate their channels based on pilot sequences sent by the user terminals (UTs). Recent work has shown that, as N grows infinitely large, (i) the simplest form of user detection, i.e., the matched filter (MF), becomes optimal, (ii) the transmit power per UT can be made arbitrarily small, (iii) the system performance is limited by pilot contamination. The aim of this paper is to assess to which extent the above conclusions hold true for large, but finite N. In particular, we derive how many antennas per UT are needed to achieve \eta % of the ultimate performance. We then study how much can be gained through more sophisticated minimum-mean-square-error (MMSE) detection and how many more antennas are needed with the MF to achieve the same performance. Our analysis relies on novel results from random matrix theory which allow us to derive tight approximations of achievable rates with a class of linear receivers.Comment: 6 pages, 3 figures, to be presented at the Allerton Conference on Communication, Control and Computing, Urbana-Champaign, Illinois, US, Sep. 201
    corecore