18,938 research outputs found

    Diversity techniques for blind channel equalization in mobile communications

    Get PDF
    A blind algorithm for channel distortion compensation is presented which can be employed in spatial or temporal diversity receivers. The proposed technique can be used in frequency selective and frequency flat fading mobile channels, using burst transmission schemes in the first case and OFDM modulation in the second one. The algorithm is base on a deterministic criteria and is suited for estimation when short sets of data are available.Peer ReviewedPostprint (published version

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Beamforming Design for Joint Localization and Data Transmission in Distributed Antenna System

    Full text link
    A distributed antenna system is studied whose goal is to provide data communication and positioning functionalities to Mobile Stations (MSs). Each MS receives data from a number of Base Stations (BSs), and uses the received signal not only to extract the information but also to determine its location. This is done based on Time of Arrival (TOA) or Time Difference of Arrival (TDOA) measurements, depending on the assumed synchronization conditions. The problem of minimizing the overall power expenditure of the BSs under data throughput and localization accuracy requirements is formulated with respect to the beamforming vectors used at the BSs. The analysis covers both frequency-flat and frequency-selective channels, and accounts also for robustness constraints in the presence of parameter uncertainty. The proposed algorithmic solutions are based on rank-relaxation and Difference-of-Convex (DC) programming.Comment: 15 pages, 9 figures, and 1 table, accepted in IEEE Transactions on Vehicular Technolog
    • …
    corecore