15 research outputs found

    Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

    Get PDF
    To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation framework, the problem of symbol time offset (STO) and carrier frequency offset (CFO) estimation is investigated and synchronization approaches, which can operate in burst and continuous transmissions, are designed. The first part of this work presents the modulation principles of prominent 5G candidate waveforms and then focuses on the GFDM basic and advanced attributes. The GFDM concept is extended towards the use of OQAM, introducing the novel frequency-shift OQAM-GFDM, and a new low complexity model based on signal processing carried out in the time domain. A new prototype filter proposal highlights the benefits obtained in terms of a reduced out-of-band (OOB) radiation and more attractive hardware implementation cost. With proper parameterization of the advanced GFDM, the achieved gains are applicable to other filtered OFDM waveforms. In the second part, a search approach for estimating STO and CFO in GFDM is evaluated. A self-interference metric is proposed to quantify the effective SNR penalty caused by the residual time and frequency misalignment or intrinsic inter-symbol interference (ISI) and inter-carrier interference (ICI) for arbitrary pulse shape design in GFDM. In particular, the ICI can be used as a non-data aided approach for frequency estimation. Then, GFDM training sequences, defined either as an isolated preamble or embedded as a midamble or pseudo-circular pre/post-amble, are designed. Simulations show better OOB emission and good estimation results, either comparable or superior, to state-of-the-art OFDM system in wireless channels

    Performance of SC-FDMA with diversity techniques over land mobile satellite channel

    Get PDF
    La demanda de la alta velocidad de datos resulta en una importante interferencia entre símbolos para los sistemas monoportadora en canales de ancho de banda y potencia limitada. Superar la selectividad en el tiempo y la frecuencia del canal de propagación requiere el uso de potentes técnicas de procesamiento de señales. Ejemplos recientes incluyen el uso de múltiples antenas en el transmisor / receptor, en la técnica conocida como Multiple-Input Multiple-Output (MIMO). En ciertos entornos (tales como el enlace ascendente de un enlace móvil) por lo general sólo una antena está disponible en la transmisión. Por lo tanto, sólo esquemas con entrada individual y salida única (Single Input Single Output, SISO) o transmisiones con entrada única y múltiples salidas (Single Input Multiple Output, SIMO) son factibles. La multiplexación por división ortogonal en frecuencia (Orthogonal Frequency-Division Multiplexing, OFDM) es una técnica de modulación ampliamente utilizada por su robustez frente a la selectividad en frecuencia de los canales, su escalabilidad y su compatibilidad con MIMO. Sin embargo, sufre de una alta relación de potencia de pico a promedio (Peak-to-Average Power Ratio, PAPR) que necesita amplificadores de alta potencia muy lineales, lo que resulta costoso energéticamente para la transmisión. La técnica monoportadora con acceso múltiple por división de frecuencia (Single Carrier Frequency-Division Multiple Access , SC-FDMA) se ha convertido en una alternativa a la técnica de OFDM que se utiliza específicamente en el enlace ascendente de LTE. SC-FDMA es capaz de reducir la PAPR en la transmisión, dando lugar a una relajación de las limitaciones en cuanto a la eficiencia de potencia necesaria en los terminales de usuario y las unidades satélite. SC-FDMA puede ser descrito como una versión de OFDMA en el que se incluyen una etapa de pre-codificación y de pre-codificación inversa en el transmisor y el receptor respectivamente. Así, los símbolos se transmiten en tiempo, pero después de ser procesados en la frecuencia. Incluso con el uso de OFDMA o SC-FDMA, la ISI tiene que ser compensada por la igualación, que normalmente se realiza en el dominio de frecuencia. El objetivo de esta tesis es proporcionar un análisis matemático del comportamiento de SC-FDMA en un canal móvil terrestre por satélite (Land Mobile Satellite, LMS). Para este propósito, el canal se modela como un canal Rice sombreado tal que la línea de visión (Line of Sight, LOS) sigue la distribución de Nakagami. En primer lugar, se describen las técnicas de modulación multiportadora OFDMA y SC-FDMA. A continuación, se lleva a cabo un análisis de OFDMA y SC-FDMA basado en el ruido complejo recibido a la entrada del detector. Se evalúa la probabilidad de error de bit (Bit Error Rate, BER) de SC-FDMA para diferentes profundidades del desvanecimiento y de la diversidad de antena en el receptor. También se evalúa la eficiencia espectral de SC-FDMA para el canal LMS. Por último, se abordan las técnicas de diversidad y se evalúan las técnicas conocidas como Maximal Ratio Combining (MRC) y Equal Gain Combining (EGC)

    Channel estimation in massive MIMO systems

    Get PDF
    Last years were characterized by a great demand for high data throughput, good quality and spectral efficiency in wireless communication systems. Consequently, a revolution in cellular networks has been set in motion towards to 5G. Massive multiple-input multiple-output (MIMO) is one of the new concepts in 5G and the idea is to scale up the known MIMO systems in unprecedented proportions, by deploying hundreds of antennas at base stations. Although, perfect channel knowledge is crucial in these systems for user and data stream separation in order to cancel interference. The most common way to estimate the channel is based on pilots. However, problems such as interference and pilot contamination (PC) can arise due to the multiplicity of channels in the wireless link. Therefore, it is crucial to define techniques for channel estimation that together with pilot contamination mitigation allow best system performance and at same time low complexity. This work introduces a low-complexity channel estimation technique based on Zadoff-Chu training sequences. In addition, different approaches were studied towards pilot contamination mitigation and low complexity schemes, with resort to iterative channel estimation methods, semi-blind subspace tracking techniques and matrix inversion substitutes. System performance simulations were performed for the several proposed techniques in order to identify the best tradeoff between complexity, spectral efficiency and system performance

    Carrier Synchronization in High Bit-Rate Optical Transmission Systems

    Get PDF
    In this dissertation, design of optical transmission systems with differential detection and coherent detection is briefly described. More over, algorithms for carrier synchronization and phase estimation with their implementation in high bit-rate optical transmission systems are proposed

    Implementação de códigos LDPC em OFDM e SC-FDE

    Get PDF
    Os desenvolvimentos dos sistemas de comunicação sem fios apontam para transmissões de alta velocidade e alta qualidade de serviço com um uso eficiente de energia. Eficiência espectral pode ser obtida por modulações multinível, enquanto que melhorias na eficiência de potência podem ser proporcionadas pelo uso de códigos corretores de erros. Os códigos Low-Density Parity-Check (LDPC), devido ao seu desempenho próximo do limite de Shannon e baixa complexidade na implementação e descodificação são apropriados para futuros sistemas de comunicações sem fios. Por outro lado, o uso de modulações multinível acarreta limitações na amplificação. Contudo, uma amplificação eficiente pode ser assegurada por estruturas de transmissão onde as modulações multinível são decompostas em submodulações com envolvente constante que podem ser amplificadas por amplificadores não lineares a operar na zona de saturação. Neste tipo de estruturas surgem desvios de fase e ganho, produzindo distorções na constelação resultante da soma de todos os sinais amplificados. O trabalho foca-se no uso dos códigos LDPC em esquemas multiportadora e monoportadora, com especial ênfase na performance de uma equalização iterativa implementada no domínio da frequência por um Iterative Block-Decision Feedback Equalizer (IB-DFE). São analisados aspectos como o impacto do número de iterações no processo de descodificação dentro das iterações do processo de equalização. Os códigos LDPC também serão utilizados para compensar os desvios de fase em recetores iterativos para sistemas baseados em transmissores com vários ramos de amplificação. É feito um estudo sobre o modo como estes códigos podem aumentar a tolerância a erros de fase que incluí uma análise da complexidade e um algoritmo para estimação dos desequilíbrios de fase

    Efficient cooperative OFMD localization

    Get PDF
    The author of this project has been working on the topic of cooperative OFDM localization for one year in the TU Delft as an exchange student. Nowadays there are many potential uses for cooperative localization in places in which the common systems like GPS could not provide an accurate estimation. It is an advantage to join into a wireless network with a mobile device and be able to navigate and know your position. Two critical points in this topic are the accuracy of the localization, that is required to be high, and the power consumption of the mobile devices, which is a critical resource. Existing indoor cooperative localization methods require big battery consumption for the mobile relays, and the accuracy in low SNR situations is not good enough. The scope of this thesis is to estimate the localization of an unknown mobile device in an efficient way, being accurate even in low SNR situations, with low power consumption. One first approximation and the reference [11] suggested the idea of the “feature method” which is a bandwidth efficient cooperative ZP-OFDM localization method. After testing different features and conclude that the peak to average power ratio has the best performance another new idea came up. A new simple relay is proposed, called trigger relay, which consists of forwarding a known signal when the incoming signal is received. With this new idea it is solved the bandwidth and computational problem, being the most efficient method to estimate the TDOA. This brilliant idea was published in the PIMRC conference in September, 2011.Ingeniería de TelecomunicaciónTelekomunikazio Ingeniaritz

    Superimposed training for single carrier transmission in future mobile communications

    Get PDF
    The amount of wireless devices and wireless traffic has been increasing exponentially for the last ten years. It is forecasted that the exponential growth will continue without saturation till 2020 and probably further. So far, network vendors and operators have tackled the problem by introducing new evolutions of cellular macro networks, where each evolution has increased the physical layer spectral efficiency. Unfortunately, the spectral efficiency of the physical layer is achieving the Shannon-Hartley limit and does not provide much room for improvement anymore. However, considering the overhead due to synchronization and channel estimation reference symbols in the context of physical layer spectral efficiency, we believe that there is room for improvement. In this thesis, we will study the potentiality of superimposed training methods, especially data-dependent superimposed training, to boost the spectral efficiency of wideband single carrier communications even further. The main idea is that with superimposed training we can transmit more data symbols in the same time duration as compared to traditional time domain multiplexed training. In theory, more data symbols means more data bits which indicates higher throughput for the end user. In practice, nothing is free. With superimposed training we encounter self-interference between the training signal and the data signal. Therefore, we have to look for iterative receiver structures to separate these two or to estimate both, the desired data signal and the interfering component. In this thesis, we initiate the studies to find out if we truly can improve the existing systems by introducing the superimposed training scheme. We show that in certain scenarios we can achieve higher spectral efficiency, which maps directly to higher user throughput, but with the cost of higher signal processing burden in the receiver. In addition, we provide analytical tools for estimating the symbol or bit error ratio in the receiver with a given parametrization. The discussion leads us to the conclusion that there still remains several open topics for further study when looking for new ways of optimizing the overhead of reference symbols in wireless communications. Superimposed training with data-dependent components may prove to provide extra throughput gain. Furthermore, the superimposed component may be used for, e.g., improved synchronization, low bit-rate signaling or continuous tracking of neighbor cells. We believe that the current systems could be improved by using the superimposed training collectively with time domain multiplexed training

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010
    corecore