16 research outputs found

    Asynchronous Channel-Hopping Scheme under Jamming Attacks

    Get PDF

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Handshaking Protocols and Jamming Mechanisms for Blind Rendezvous in a Dynamic Spectrum Access Environment

    Get PDF
    Blind frequency rendezvous is an important process for bootstrapping communications between radios without the use of pre-existing infrastructure or common control channel in a Dynamic Spectrum Access (DSA) environment. In this process, radios attempt to arrive in the same frequency channel and recognize each other’s presence in changing, under-utilized spectrum. This paper refines existing blind rendezvous techniques by introducing a handshaking algorithm for setting up communications once two radios have arrived in the same frequency channel. It then investigates the effect of different jamming techniques on blind rendezvous algorithms that utilize this handshake. The handshake performance is measured by determining the probability of a handshake, the time to handshake, and the increase in time to rendezvous (TTR) with a handshake compared to that without. The handshake caused varying increases in TTR depending on the time spent in each channel. Four different jamming techniques are applied to the blind rendezvous process: noise, deceptive, sense, and Primary User Emulation (PUE). Each jammer type is analyzed to determine how they increase the TTR, how often they successfully jam over a period of time, and how long it takes to jam. The sense jammer was most effective, followed by PUE, deceptive, and noise, respectively

    Bootstrapping Cognitive Radio Networks

    Get PDF
    Cognitive radio networks promise more efficient spectrum utilization by leveraging degrees of freedom and distributing data collection. The actual realization of these promises is challenged by distributed control, and incomplete, uncertain and possibly conflicting knowledge bases. We consider two problems in bootstrapping, evolving, and managing cognitive radio networks. The first is Link Rendezvous, or how separate radio nodes initially find each other in a spectrum band with many degrees of freedom, and little shared knowledge. The second is how radio nodes can negotiate for spectrum access with incomplete information. To address the first problem, we present our Frequency Parallel Blind Link Rendezvous algorithm. This approach, designed for recent generations of digital front-ends, implicitly shares vague information about spectrum occupancy early in the process, speeding the progress towards a solution. Furthermore, it operates in the frequency domain, facilitating a parallel channel rendezvous. Finally, it operates without a control channel and can rendezvous anywhere in the operating band. We present simulations and analysis on the false alarm rate for both a feature detector and a cross-correlation detector. We compare our results to the conventional frequency hopping sequence rendezvous techniques. To address the second problem, we model the network as a multi-agent system and negotiate by exchanging proposals, augmented with arguments. These arguments include information about priority status and the existence of other nodes. We show in a variety of network topologies that this process leads to solutions not otherwise apparent to individual nodes, and achieves superior network throughput, request satisfaction, and total number of connections, compared to our baselines. The agents independently formulate proposals based upon communication desires, evaluate these proposals based upon capacity constraints, create ariii guments in response to proposal rejections, and re-evaluate proposals based upon received arguments. We present our negotiation rules, messages, and protocol and demonstrate how they interoperate in a simulation environment

    Adaptive and autonomous protocol for spectrum identification and coordination in ad hoc cognitive radio network

    Get PDF
    The decentralised structure of wireless Ad hoc networks makes them most appropriate for quick and easy deployment in military and emergency situations. Consequently, in this thesis, special interest is given to this form of network. Cognitive Radio (CR) is defined as a radio, capable of identifying its spectral environment and able to optimally adjust its transmission parameters to achieve interference free communication channel. In a CR system, Dynamic Spectrum Access (DSA) is made feasible. CR has been proposed as a candidate solution to the challenge of spectrum scarcity. CR works to solve this challenge by providing DSA to unlicensed (secondary) users. The introduction of this new and efficient spectrum management technique, the DSA, has however, opened up some challenges in this wireless Ad hoc Network of interest; the Cognitive Radio Ad Hoc Network (CRAHN). These challenges, which form the specific focus of this thesis are as follows: First, the poor performance of the existing spectrum sensing techniques in low Signal to Noise Ratio (SNR) conditions. Secondly the lack of a central coordination entity for spectrum allocation and information exchange in the CRAHN. Lastly, the existing Medium Access Control (MAC) Protocol such as the 802.11 was designed for both homogeneous spectrum usage and static spectrum allocation technique. Consequently, this thesis addresses these challenges by first developing an algorithm comprising of the Wavelet-based Scale Space Filtering (WSSF) algorithm and the Otsu's multi-threshold algorithm to form an Adaptive and Autonomous WaveletBased Scale Space Filter (AWSSF) for Primary User (PU) sensing in CR. These combined algorithms produced an enhanced algorithm that improves detection in low SNR conditions when compared to the performance of EDs and other spectrum sensing techniques in the literature. Therefore, the AWSSF met the performance requirement of the IEEE 802.22 standard as compared to other approaches and thus considered viable for application in CR. Next, a new approach for the selection of control channel in CRAHN environment using the Ant Colony System (ACS) was proposed. The algorithm reduces the complex objective of selecting control channel from an overtly large spectrum space,to a path finding problem in a graph. We use pheromone trails, proportional to channel reward, which are computed based on received signal strength and channel availability, to guide the construction of selection scheme. Simulation results revealed ACS as a feasible solution for optimal dynamic control channel selection. Finally, a new channel hopping algorithm for the selection of a control channel in CRAHN was presented. This adopted the use of the bio-mimicry concept to develop a swarm intelligence based mechanism. This mechanism guides nodes to select a common control channel within a bounded time for the purpose of establishing communication. Closed form expressions for the upper bound of the time to rendezvous (TTR) and Expected TTR (ETTR) on a common control channel were derived for various network scenarios. The algorithm further provides improved performance in comparison to the Jump-Stay and Enhanced Jump-Stay Rendezvous Algorithms. We also provided simulation results to validate our claim of improved TTR. Based on the results obtained, it was concluded that the proposed system contributes positively to the ongoing research in CRAHN

    DISTRIBUTED INTELLIGENT SPECTRUM MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS

    Get PDF
    The rapid growth of the number of wireless devices has brought an exponential increase in the demand of the radio spectrum. However, according to the Federal Communications Commission (FCC), almost all the radio spectrum for wireless com- munications has already been allocated. In addition, according to FCC, up to 85% of the allocated spectrum is underutilized due to the current fixed spectrum alloca- tion policy. To alleviate the spectrum scarcity problem, FCC has suggested a new paradigm for dynamically accessing the allocated spectrum. Cognitive radio (CR) technology has emerged as a promising solution to realize dynamic spectrum access (DSA). With the capability of sensing the frequency bands in a time and location- varying spectrum environment and adjusting the operating parameters based on the sensing outcome, CR technology allows an unlicensed user to exploit the licensed channels which are not used by licensed users in an opportunistic manner. In this dissertation, distributed intelligent spectrum management in CR ad hoc networks is explored. In particular, four spectrum management issues in CR ad hoc networks are investigated: 1) distributed broadcasting in CR ad hoc networks; 2) distributed optimal HELLO message exchange in CR ad hoc networks; 3) distributed protocol to defend a particular network security attack in CR ad hoc networks; and 4) distributed spectrum handoff protocol in CR ad hoc networks. The research in this dissertation has fundamental impact on CR ad hoc network establishment, net- work functionality, network security, and network performance. In addition, many of the unique challenges of distributed intelligent spectrum management in CR ad hoc networks are addressed for the first time in this dissertation. These challenges are extremely difficult to solve due to the dynamic spectrum environment and they have significant effects on network functionality and performance. This dissertation is essential for establishing a CR ad hoc network and realizing networking protocols for seamless communications in CR ad hoc networks. Furthermore, this dissertation provides critical theoretical insights for future designs in CR ad hoc networks

    Providing efficient services for smartphone applications

    Get PDF
    Mobile applications are becoming an indispensable part of people\u27s lives, as they allow access to a broad range of services when users are on the go. We present our efforts towards enabling efficient mobile applications in smartphones. Our goal is to improve efficiency of the underlying services, which provide essential functionality to smartphone applications. In particular, we are interested in three fundamental services in smartphones: wireless communication service, power management service, and location reporting service.;For the wireless communication service, we focus on improving spectrum utilization efficiency for cognitive radio communications. We propose ETCH, a set of channel hopping based MAC layer protocols for communication rendezvous in cognitive radio communications. ETCH can fully utilize spectrum diversity in communication rendezvous by allowing all the rendezvous channels to be utilized at the same time.;For the power management service, we improve its efficiency from three different angles. The first angle is to reduce energy consumption of WiFi communications. We propose HoWiES, a system-for WiFi energy saving by utilizing low-power ZigBee radio. The second angle is to reduce energy consumption of web based smartphone applications. We propose CacheKeeper, which is a system-wide web caching service to eliminate unnecessary energy consumption caused by imperfect web caching in many smartphone applications. The third angle is from the perspective of smartphone CPUs. We found that existing CPU power models are ill-suited for modern multicore smartphone CPUs. We present a new approach of CPU power modeling for smartphones. This approach takes CPU idle power states into consideration, and can significantly improve power estimation accuracy and stability for multicore smartphones.;For the location reporting service, we aim to design an efficient location proof solution for mobile location based applications. We propose VProof, a lightweight and privacy-preserving location proof scheme that allows users to construct location proofs by simply extracting unforgeable information from the received packets

    Secure MAC protocols for cognitive radio networks

    Get PDF
    A thesis submitted in partial fulfilment for the degree of Doctor of PhilosophyWith the rapid increase in wireless devices, an effective improvement in the demand of efficient spectrum utilisation for gaining better connectivity is needed. Cognitive Radio (CR) is an emerging technology that exploits the inefficient utilisation of the unused spectrum dynamically. Since spectrum sharing is responsible for coordinating channels’ access for Cognitive Users (CUs), the Common Control Channel (CCC) is one of the existing methods used to exchange the control information between CUs. However, the unique characteristics and parameters of Cognitive Radio Networks (CRNs) present several possible threats targeting spectrum sensing, spectrum management, spectrum sharing, and spectrum mobility leading to the deterioration of the network performance. Thus, protection and detection security mechanisms are essential to maintaining the CRNs. This thesis presents a novel decentralised CR MAC protocol that successfully utilises the unused portion of the licensed band. The protocol achieves improved performance; communication time and throughput when compared to two benchmark protocols. Less communication time and higher throughput are accomplished by the protocol due to performing fast switching to the selected available data channel for initiating data transmission. The proposed protocol is then extended to two different versions based on two authentication approaches applied to it; one using Digital Signature and another is based on Shared-Key. The two proposed secure protocols address the security requirements in CRNs leading to subsequent secure communication among CUs. The protocols function effectively in providing defence against several attacks related to the MAC layer such as; Spectrum Sensing Data Manipulation/Falsification, Data Tempering and Modification, Jamming attacks, Eavesdropping, Forgery and Fake control information attacks, MAC address spoofing, and unauthorised access attacks. The associated security algorithms ensure the successful secure communication between CUs in a cooperative approach. Moreover, the security protocols are investigated and analysed in terms of security flows by launching unauthorised access and modification attacks on the transmitted information. The testing results demonstrated that two protocols perform successful detection of threats and ensure secure communication in CRNs

    Facilitating Flexible Link Layer Protocols for Future Wireless Communication Systems

    Get PDF
    This dissertation addresses the problem of designing link layer protocols which are flexible enough to accommodate the demands offuture wireless communication systems (FWCS).We show that entire link layer protocols with diverse requirements and responsibilities can be composed out of reconfigurable and reusable components.We demonstrate this by designing and implementinga novel concept termed Flexible Link Layer (FLL) architecture.Through extensive simulations and practical experiments, we evaluate a prototype of the suggested architecture in both fixed-spectrumand dynamic spectrum access (DSA) networks. FWCS are expected to overcome diverse challenges including the continual growthin traffic volume and number of connected devices.Furthermore, they are envisioned to support a widerange of new application requirements and operating conditions.Technology trends, including smart homes, communicating machines, and vehicularnetworks, will not only grow on a scale that once was unimaginable, they will also become the predominant communication paradigm, eventually surpassing today's human-produced network traffic. In order for this to become reality, today's systems have to evolve in many ways.They have to exploit allocated resources in a more efficient and energy-conscious manner.In addition to that, new methods for spectrum access and resource sharingneed to be deployed.Having the diversification of applications and network conditions in mind, flexibility at all layers of a communication system is of paramount importance in order to meet the desired goals. However, traditional communication systems are often designed with specific and distinct applications in mind. Therefore, system designers can tailor communication systems according to fixedrequirements and operating conditions, often resulting in highly optimized but inflexible systems.Among the core problems of such design is the mix of data transfer and management aspects.Such a combination of concerns clearly hinders the reuse and extension of existing protocols. To overcome this problem, the key idea explored in this dissertation is a component-based design to facilitate the development of more flexible and versatile link layer protocols.Specifically, the FLL architecture, suggested in this dissertation, employs a generic, reconfigurable data transfer protocol around which one or more complementary protocols, called link layer applications, are responsible for management-related aspects of the layer. To demonstrate the feasibility of the proposed approach, we have designed andimplemented a prototype of the FLL architecture on the basis ofa reconfigurable software defined radio (SDR) testbed.Employing the SDR prototype as well as computer simulations, thisdissertation describes various experiments used to examine a range of link layerprotocols for both fixed-spectrum and DSA networks. This dissertation firstly outlines the challenges faced by FWCSand describes DSA as a possible technology component for their construction.It then specifies the requirements for future DSA systemsthat provide the basis for our further considerations.We then review the background on link layer protocols, surveyrelated work on the construction of flexible protocol frameworks,and compare a range of actual link layer protocols and algorithms.Based on the results of this analysis, we design, implement, and evaluatethe FLL architecture and a selection of actual link layer protocols. We believe the findings of this dissertation add substantively to the existing literature on link layer protocol design and are valuable for theoreticians and experimentalists alike

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp
    corecore