7,467 research outputs found

    On Non-coherent MIMO Channels in the Wideband Regime: Capacity and Reliability

    Full text link
    We consider a multiple-input, multiple-output (MIMO) wideband Rayleigh block fading channel where the channel state is unknown to both the transmitter and the receiver and there is only an average power constraint on the input. We compute the capacity and analyze its dependence on coherence length, number of antennas and receive signal-to-noise ratio (SNR) per degree of freedom. We establish conditions on the coherence length and number of antennas for the non-coherent channel to have a "near coherent" performance in the wideband regime. We also propose a signaling scheme that is near-capacity achieving in this regime. We compute the error probability for this wideband non-coherent MIMO channel and study its dependence on SNR, number of transmit and receive antennas and coherence length. We show that error probability decays inversely with coherence length and exponentially with the product of the number of transmit and receive antennas. Moreover, channel outage dominates error probability in the wideband regime. We also show that the critical as well as cut-off rates are much smaller than channel capacity in this regime

    Capacity of The Discrete-Time Non-Coherent Memoryless Gaussian Channels at Low SNR

    Full text link
    We address the capacity of a discrete-time memoryless Gaussian channel, where the channel state information (CSI) is neither available at the transmitter nor at the receiver. The optimal capacity-achieving input distribution at low signal-to-noise ratio (SNR) is precisely characterized, and the exact capacity of a non-coherent channel is derived. The derived relations allow to better understanding the capacity of non-coherent channels at low SNR. Then, we compute the non-coherence penalty and give a more precise characterization of the sub-linear term in SNR. Finally, in order to get more insight on how the optimal input varies with SNR, upper and lower bounds on the non-zero mass point location of the capacity-achieving input are given.Comment: 5 pages and 4 figures. To appear in Proceeding of International Symposium on Information Theory (ISIT 2008

    Throughput Analysis of Buffer-Constrained Wireless Systems in the Finite Blocklength Regime

    Get PDF
    In this paper, wireless systems operating under queueing constraints in the form of limitations on the buffer violation probabilities are considered. The throughput under such constraints is captured by the effective capacity formulation. It is assumed that finite blocklength codes are employed for transmission. Under this assumption, a recent result on the channel coding rate in the finite blocklength regime is incorporated into the analysis and the throughput achieved with such codes in the presence of queueing constraints and decoding errors is identified. Performance of different transmission strategies (e.g., variable-rate, variable-power, and fixed-rate transmissions) is studied. Interactions between the throughput, queueing constraints, coding blocklength, decoding error probabilities, and signal-to-noise ratio are investigated and several conclusions with important practical implications are drawn

    Unified Capacity Limit of Non-coherent Wideband Fading Channels

    Full text link
    In non-coherent wideband fading channels where energy rather than spectrum is the limiting resource, peaky and non-peaky signaling schemes have long been considered species apart, as the first approaches asymptotically the capacity of a wideband AWGN channel with the same average SNR, whereas the second reaches a peak rate at some finite critical bandwidth and then falls to zero as bandwidth grows to infinity. In this paper it is shown that this distinction is in fact an artifact of the limited attention paid in the past to the product between the bandwidth and the fraction of time it is in use. This fundamental quantity, called bandwidth occupancy, measures average bandwidth usage over time. For all signaling schemes with the same bandwidth occupancy, achievable rates approach to the wideband AWGN capacity within the same gap as the bandwidth occupancy approaches its critical value, and decrease to zero as the occupancy goes to infinity. This unified analysis produces quantitative closed-form expressions for the ideal bandwidth occupancy, recovers the existing capacity results for (non-)peaky signaling schemes, and unveils a trade-off between the accuracy of approximating capacity with a generalized Taylor polynomial and the accuracy with which the optimal bandwidth occupancy can be bounded.Comment: Accepted for publication in IEEE Transactions on Wireless Communications. Copyright may be transferred without notic
    • …
    corecore