548 research outputs found

    Channel coded iterative center-shifting K-best sphere detection for rank-deficient systems

    No full text
    Based on an EXtrinsic Information Transfer (EXIT) chart assisted receiver design, a low-complexity near-Maximum A Posteriori (MAP) detector is constructed for high-throughput MIMO systems. A high throughput is achieved by invoking high-order modulation schemes and/or multiple transmit antennas, while employing a novel sphere detector (SD) termed as a center-shifting SD scheme, which updates the SD’s search center during its consecutive iterations with the aid of channel decoder. Two low-complexity iterative center-shifting SD aided receiver architectures are investigated, namely the direct-hard-decision centershifting (DHDC) and the direct-soft-decision center-shifting (DSDC) schemes. Both of them are capable of attaining a considerable memory and complexity reduction over the conventional SD-aided iterative benchmark receiver. For example, the DSDC scheme reduces the candidate-list-generation-related and extrinsic-LLR-calculation related complexity by a factor of 3.5 and 16, respectively. As a further benefit, the associated memory requirements were also reduced by a factor of 16

    Iterative Irregular Sphere Detection in High-Rate Downlink SDMA Systems

    Full text link
    corecore