3,093 research outputs found

    Successive Refinement with Decoder Cooperation and its Channel Coding Duals

    Full text link
    We study cooperation in multi terminal source coding models involving successive refinement. Specifically, we study the case of a single encoder and two decoders, where the encoder provides a common description to both the decoders and a private description to only one of the decoders. The decoders cooperate via cribbing, i.e., the decoder with access only to the common description is allowed to observe, in addition, a deterministic function of the reconstruction symbols produced by the other. We characterize the fundamental performance limits in the respective settings of non-causal, strictly-causal and causal cribbing. We use a new coding scheme, referred to as Forward Encoding and Block Markov Decoding, which is a variant of one recently used by Cuff and Zhao for coordination via implicit communication. Finally, we use the insight gained to introduce and solve some dual channel coding scenarios involving Multiple Access Channels with cribbing.Comment: 55 pages, 15 figures, 8 tables, submitted to IEEE Transactions on Information Theory. A shorter version submitted to ISIT 201

    Information Nonanticipative Rate Distortion Function and Its Applications

    Full text link
    This paper investigates applications of nonanticipative Rate Distortion Function (RDF) in a) zero-delay Joint Source-Channel Coding (JSCC) design based on average and excess distortion probability, b) in bounding the Optimal Performance Theoretically Attainable (OPTA) by noncausal and causal codes, and computing the Rate Loss (RL) of zero-delay and causal codes with respect to noncausal codes. These applications are described using two running examples, the Binary Symmetric Markov Source with parameter p, (BSMS(p)) and the multidimensional partially observed Gaussian-Markov source. For the multidimensional Gaussian-Markov source with square error distortion, the solution of the nonanticipative RDF is derived, its operational meaning using JSCC design via a noisy coding theorem is shown by providing the optimal encoding-decoding scheme over a vector Gaussian channel, and the RL of causal and zero-delay codes with respect to noncausal codes is computed. For the BSMS(p) with Hamming distortion, the solution of the nonanticipative RDF is derived, the RL of causal codes with respect to noncausal codes is computed, and an uncoded noisy coding theorem based on excess distortion probability is shown. The information nonanticipative RDF is shown to be equivalent to the nonanticipatory epsilon-entropy, which corresponds to the classical RDF with an additional causality or nonanticipative condition imposed on the optimal reproduction conditional distribution.Comment: 34 pages, 12 figures, part of this paper was accepted for publication in IEEE International Symposium on Information Theory (ISIT), 2014 and in book Coordination Control of Distributed Systems of series Lecture Notes in Control and Information Sciences, 201

    Multiple Access Channels with Combined Cooperation and Partial Cribbing

    Full text link
    In this paper we study the multiple access channel (MAC) with combined cooperation and partial cribbing and characterize its capacity region. Cooperation means that the two encoders send a message to one another via a rate-limited link prior to transmission, while partial cribbing means that each of the two encoders obtains a deterministic function of the other encoder's output with or without delay. Prior work in this field dealt separately with cooperation and partial cribbing. However, by combining these two methods we can achieve significantly higher rates. Remarkably, the capacity region does not require an additional auxiliary random variable (RV) since the purpose of both cooperation and partial cribbing is to generate a common message between the encoders. In the proof we combine methods of block Markov coding, backward decoding, double rate-splitting, and joint typicality decoding. Furthermore, we present the Gaussian MAC with combined one-sided cooperation and quantized cribbing. For this model, we give an achievability scheme that shows how many cooperation or quantization bits are required in order to achieve a Gaussian MAC with full cooperation/cribbing capacity region. After establishing our main results, we consider two cases where only one auxiliary RV is needed. The first is a rate distortion dual setting for the MAC with a common message, a private message and combined cooperation and cribbing. The second is a state-dependent MAC with cooperation, where the state is known at a partially cribbing encoder and at the decoder. However, there are cases where more than one auxiliary RV is needed, e.g., when the cooperation and cribbing are not used for the same purposes. We present a MAC with an action-dependent state, where the action is based on the cooperation but not on the cribbing. Therefore, in this case more than one auxiliary RV is needed

    Control-theoretic Approach to Communication with Feedback: Fundamental Limits and Code Design

    Full text link
    Feedback communication is studied from a control-theoretic perspective, mapping the communication problem to a control problem in which the control signal is received through the same noisy channel as in the communication problem, and the (nonlinear and time-varying) dynamics of the system determine a subclass of encoders available at the transmitter. The MMSE capacity is defined to be the supremum exponential decay rate of the mean square decoding error. This is upper bounded by the information-theoretic feedback capacity, which is the supremum of the achievable rates. A sufficient condition is provided under which the upper bound holds with equality. For the special class of stationary Gaussian channels, a simple application of Bode's integral formula shows that the feedback capacity, recently characterized by Kim, is equal to the maximum instability that can be tolerated by the controller under a given power constraint. Finally, the control mapping is generalized to the N-sender AWGN multiple access channel. It is shown that Kramer's code for this channel, which is known to be sum rate optimal in the class of generalized linear feedback codes, can be obtained by solving a linear quadratic Gaussian control problem.Comment: Submitted to IEEE Transactions on Automatic Contro

    Channels with Cooperation Links that May Be Absent

    Full text link
    It is well known that cooperation between users in a communication network can lead to significant performance gains. A common assumption in past works is that all the users are aware of the resources available for cooperation, and know exactly to what extent these resources can be used. Unfortunately, in many modern communication networks the availability of cooperation links cannot be guaranteed a priori, due to the dynamic nature of the network. In this work a family of models is suggested where the cooperation links may or may not be present. Coding schemes are devised that exploit the cooperation links if they are present, and can still operate (although at reduced rates) if cooperation is not possible.Comment: Accepted for publication in the IEEE transaction on Information Theory, June 201

    Rate-Distortion Theory for Secrecy Systems

    Full text link
    Secrecy in communication systems is measured herein by the distortion that an adversary incurs. The transmitter and receiver share secret key, which they use to encrypt communication and ensure distortion at an adversary. A model is considered in which an adversary not only intercepts the communication from the transmitter to the receiver, but also potentially has side information. Specifically, the adversary may have causal or noncausal access to a signal that is correlated with the source sequence or the receiver's reconstruction sequence. The main contribution is the characterization of the optimal tradeoff among communication rate, secret key rate, distortion at the adversary, and distortion at the legitimate receiver. It is demonstrated that causal side information at the adversary plays a pivotal role in this tradeoff. It is also shown that measures of secrecy based on normalized equivocation are a special case of the framework.Comment: Update version, to appear in IEEE Transactions on Information Theor

    The benefit of a 1-bit jump-start, and the necessity of stochastic encoding, in jamming channels

    Full text link
    We consider the problem of communicating a message mm in the presence of a malicious jamming adversary (Calvin), who can erase an arbitrary set of up to pnpn bits, out of nn transmitted bits (x1,,xn)(x_1,\ldots,x_n). The capacity of such a channel when Calvin is exactly causal, i.e. Calvin's decision of whether or not to erase bit xix_i depends on his observations (x1,,xi)(x_1,\ldots,x_i) was recently characterized to be 12p1-2p. In this work we show two (perhaps) surprising phenomena. Firstly, we demonstrate via a novel code construction that if Calvin is delayed by even a single bit, i.e. Calvin's decision of whether or not to erase bit xix_i depends only on (x1,,xi1)(x_1,\ldots,x_{i-1}) (and is independent of the "current bit" xix_i) then the capacity increases to 1p1-p when the encoder is allowed to be stochastic. Secondly, we show via a novel jamming strategy for Calvin that, in the single-bit-delay setting, if the encoding is deterministic (i.e. the transmitted codeword is a deterministic function of the message mm) then no rate asymptotically larger than 12p1-2p is possible with vanishing probability of error, hence stochastic encoding (using private randomness at the encoder) is essential to achieve the capacity of 1p1-p against a one-bit-delayed Calvin.Comment: 21 pages, 4 figures, extended draft of submission to ISIT 201

    Source-Channel Secrecy with Causal Disclosure

    Full text link
    Imperfect secrecy in communication systems is investigated. Instead of using equivocation as a measure of secrecy, the distortion that an eavesdropper incurs in producing an estimate of the source sequence is examined. The communication system consists of a source and a broadcast (wiretap) channel, and lossless reproduction of the source sequence at the legitimate receiver is required. A key aspect of this model is that the eavesdropper's actions are allowed to depend on the past behavior of the system. Achievability results are obtained by studying the performance of source and channel coding operations separately, and then linking them together digitally. Although the problem addressed here has been solved when the secrecy resource is shared secret key, it is found that substituting secret key for a wiretap channel brings new insights and challenges: the notion of weak secrecy provides just as much distortion at the eavesdropper as strong secrecy, and revealing public messages freely is detrimental.Comment: Allerton 2012, 6 pages. Updated version includes acknowledgement

    Nested turbo codes for the costa problem

    Get PDF
    Driven by applications in data-hiding, MIMO broadcast channel coding, precoding for interference cancellation, and transmitter cooperation in wireless networks, Costa coding has lately become a very active research area. In this paper, we first offer code design guidelines in terms of source- channel coding for algebraic binning. We then address practical code design based on nested lattice codes and propose nested turbo codes using turbo-like trellis-coded quantization (TCQ) for source coding and turbo trellis-coded modulation (TTCM) for channel coding. Compared to TCQ, turbo-like TCQ offers structural similarity between the source and channel coding components, leading to more efficient nesting with TTCM and better source coding performance. Due to the difference in effective dimensionality between turbo-like TCQ and TTCM, there is a performance tradeoff between these two components when they are nested together, meaning that the performance of turbo-like TCQ worsens as the TTCM code becomes stronger and vice versa. Optimization of this performance tradeoff leads to our code design that outperforms existing TCQ/TCM and TCQ/TTCM constructions and exhibits a gap of 0.94, 1.42 and 2.65 dB to the Costa capacity at 2.0, 1.0, and 0.5 bits/sample, respectively
    corecore