140 research outputs found

    Measurement-based analysis of delay-Doppler characteristics in an indoor environment

    Get PDF
    An analysis of delay-Doppler characteristics in the presence of moving people is presented for short-range communication in an indoor environment. Channel-sounding measurements have been carried out at 3.6 GHz in a crowded university hall during several short and long breaks in-between courses. During three consecutive days, the measurements were repeated with different positions for the transmit and receive antennas. In this study, the behavior of the maximum Doppler shift and the Doppler spread was analyzed in the time-delay domain as a function of the occupation of the hall, the polarizations of the 2 x 2 MIMO antennas, and their positions in the hall. The measurements reveal a clear distinction between the Doppler spread of the short and long breaks in the campaign, indicating a distinctive power distribution of their Doppler spectra. In addition, there is a significant contrast between the Doppler characteristics of the co- and cross-polarizations. Measurements at several positions reveal the importance of characterizing multipaths and show that the Doppler effect depends on the position of the antennas in the environment. In addition, this work also shows that the Doppler spectrum can be accurately modeled by a Cauchy distribution, allowing for the generation of parameters to describe Doppler characteristics

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Diversity Management in MIMO-OFDM Systems

    Get PDF

    Multiuser Parallel Transmission with 1-tap Time Domain Beamforming by Millimeter Wave Massive Antenna Arrays

    Get PDF
    This paper investigates the feasibility of multiuser parallel transmission by sub-array beamforming using millimeter wave bands in which the Line-of-Sight (LoS) dominant channel environment is expected. Focusing on high beamforming gain provided by the massive antenna array, each sub-array conducts first eigenmode transmission and thus one stream is allocated per user without null steering. This paper also proposes 1-tap time domain beamforming (TDBF) as the same weight is applied to all frequency components. It reduces computation complexity as well as suppressing the effect of additive noise on weight derivation. Computer simulation results show that increasing the subarray spacing stably improves signal-to-interference power ratio (SIR) performance and that the proposed 1-tap TDBF can match the performance of the frequency domain first eigenmode transmission as a rigorous solution

    Wireless Channel Model and LDM-Based Transmission with Unequal Error Protection for Inside Train Communications

    Get PDF
    Although the deployment of wireless systems is widespread, there are still sectors where they are not used due to their lack of reliability in comparison to wired systems. Sectors like industry or vehicle communications consider their environment hostile because the wireless signals suffer a lot of interferences. One of such environments is the railway sector, where wiring removal will allow more flexibility for both control and monitoring systems. This thesis analyzes wireless communications inside train cars, aiming at modelling their behavior and at proposing techniques to increase the reliability of the critical signals among train systems, wich can coexist with other lower priority systems. After proposing a novel model of an inside train wireless channel, a transmission system based on Layered Division Multiplexing (LDM) has been proposed which theoretically promises higher capacities than traditional TDM or FDM. This capacity gain is used to provide higher reliability to critical data using Unequal Error Protection (UEP) while maintaining the same bit rate as equivalent TDM or FDM based systems. In the final part of the thesis, simulation results of the proposed LDM system are provided, combined with Alamouti space time coding and different coding rates. Multiantenna extensions of the proposed LDM schemes are also simulated, providing BER and throughput results. These results will be used to shed light about how to reduce BER of an inside train wireless communication system.Aunque el despliegue de los sistemas inalámbricos está muy extendido, aun hay sectores donde no se utiliza por la poca fiabilidad que proporcionan comparado con los sistemas cableados. Sectores como la industria o las comunicaciones vehiculares consideran el entorno donde trabajan como entorno hostil, debido a que las señales inalámbricas sufren muchas interferencias. Uno de estos entornos es el de las comunicaciones en ferrocarril donde la eliminación de cables permitiría mayor flexibilidad entre los sistemas de control y monitorización. En esta tesis se analiza el canal de comunicación inalámbrico dentro de los trenes, con el objetivo de modelar su comportamiento y proponer técnicas que permitan aumentar la fiabilidad de la información de tipo crítico transmitida entre los sistemas del tren, repercutiendo lo menos posible en otros sistemas de menor prioridad. Tras proponer el modelo de canal inalámbrico dentro del tren, se ha propuesto un sistema de transmisión basado en Layered Division Multiplexing (LDM) que analizándolo teóricamente promete mayores capacidades que los tradicionales TDM o FDM. Esta capacidad se utilizará para obtener mayor redundancia de los datos críticos usando Unequal Error Protection (UEP) manteniendo la misma tasa de transferencia bits que los sistemas basados en TDM/FDM. En la parte final de la tesis, se obtienen resultados de las simulaciones realizadas con el sistema LDM propuesto, combinada con codificación espacio temporal como Alamouti y diferentes ratios de codificación. También se han simulado configuraciones multiantena obteniendo resultados de BER y throughput. Estos resultados servirán para arrojar luz sobre cómo reducir el BER en las comunicaciones inalámbricas dentro de los trenes.Haririk gabeko sistemak oso hedatuak dauden arren oraindik erabiltzen ez dituen sektoreak badaude ematen duten fidagarritasuna txikia delako kableatutako sistemekin alderatuz. Industria bezalako sektoreek edo ibilgailuetako komunikazioek lan egiten duten ingurua oso zaratatsua izaten da eta seinaleek interferentzia asko jasaten dituzte. Tesi honetan tren barruko haririk gabeko komunikazio kanala aztertzen da, bere portaera aztertu eta modelatzeko asmotan. Jakintza honekin zein teknika izan daitekeen erabilgarriak aztertuko da datuen fidagarritasuna handitzeko helburuarekin, lehentasun gutxiago duten sistemetan eragin txikiena izanik. Modeloa atera ondoren proposatu den transmisio sistema Layered Division Multiplexing (LDM) izan da, non azterketa teorikoek TDM edo FDM sistemek baino kapazitate gehiago dutela frogatzen dute. Kapazitate hau sistemaren datu kritikoei erredundantzia gehiago emateko erabiliko da Unequal Error Protection (UEP) erabiliz, TDM/FDM sistemetan bidaltzen den bit tasa kopurua mantenduz. Tesiaren azken partean, proposatutako LDM sistemaren simulazio emaitzak ematen dira, Alamouti espazio denbora kodifikazioarekin konbinatuak eta kodigo ratio desberdinekin. Antena anitzezko konfigurazioak ere simulatu dira BER eta throughput emaitzak lortuz. Emaitza hauek haririk gabeko tren barruko komunikazioetan BER-a nola gutxitu daitekeen jakiten lagunduko digute

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Frequency Domain Backoff for Continuous Beamforming Space Division Multiple Access on Massive MIMO Wireless Backhaul Systems

    Get PDF
    This paper newly proposes a frequency domain backoff scheme dedicated to continuous beamforming space division multiple access (CB-SDMA) on massive antenna systems for wireless entrance (MAS-WE). The entrance base station (EBS) has individual base band signal processing units for respective relay stations (RSs) to be accommodated. EBS then continuously applies beamforming weight to transmission/reception signals. CB-SDMA yields virtual point-to-point backhaul link where radio resource control messages and complicated multiuser scheduling are not required. This simplified structure allows RSs to work in a distributed manner. However, one issue remains to be resolved; overloaded multiple access resulting in collision due to its random access nature. The frequency domain backoff mechanism is introduced instead of the time domain one. It can flexibly avoid co-channel interference caused by excessive spatial multiplexing. Computer simulation verifies its superiority in terms of system throughput and packet delay

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN
    • …
    corecore