205 research outputs found

    Location Optimization for Antennas by Asynchronous Particle Swarm Optimization

    Get PDF
    [[abstract]]A novel optimisation procedure for the location of the transmitter in 3 × 3 multiple input multiple output wireless local area network wireless communication systems is presented. The optimal antenna location for maximising the channel capacity is searched by particle swarm optimiser (PSO) and asynchronous particle swarm optimisation (APSO). There are two different receiver locations considered in the simulation. These two cases are: (i) the transmitter is mobile in the whole indoor environment and the receivers are located on the tables spaced in intervals uniformly distributed (ii) the transmitter is mobile and the receivers are space in uniformly distributed intervals in the whole indoor environment. Numerical results have shown that the proposed PSO and APSO methods are transmit antenna location is optimised to increase channel capacity. The APSO has better optimisation results compared with the PSO and numerical results also show that the APSO outperforms the PSO in convergence speed.[[notice]]èŁœæ­ŁćźŒç•ą[[incitationindex]]SCI[[booktype]]çŽ™æœŹ[[booktype]]電歐

    Generalised MBER-based vector precoding design for multiuser transmission

    No full text
    We propose a generalized vector precoding (VP) design based on the minimum bit error rate (MBER) criterion for multiuser transmission in the downlink of a multiuser system, where the base station (BS) equipped with multiple transmitting antennas communicates with single-receiving-antenna mobile station (MS) receivers each having a modulo device. Given the knowledge of the channel state information and the current information symbol vector to be transmitted, our scheme directly generates the effective symbol vector based on the MBER criterion using the particle swarm optimization (PSO) algorithm. The proposed PSO-aided generalized MBER VP scheme is shown to outperform the powerful minimum mean-square-error (MMSE) VP and improved MMSE-VP benchmarks, particularly for rank-deficient systems, where the number of BS transmitting antennas is lower than the number of MSs supported

    Optimal receiver antenna location in indoor environment using dynamic differential evolution and genetic algorithm

    Get PDF
    Using the impulse responses of these multipath channels, the bit error rate (BER) performance for binary pulse amplitude modulation impulse radio ultra-wideband communication system is calculated. The optimization location of receiving antenna is investigated by dynamic differential evolution (DDE) and genetic algorithm (GA) to minimize the outage probability. Numerical results show that the performance for reducing BER and outage probability by DDE algorithm is better than that by GA

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Efficient Detectors for MIMO-OFDM Systems under Spatial Correlation Antenna Arrays

    Full text link
    This work analyzes the performance of the implementable detectors for multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system condi- tions, including antenna correlation and array configuration. Time-domain channel model has been used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order and antenna arrays configurations. A bunch of MIMO-OFDM detectors were analyzed for the purpose of achieve high performance combined with high capacity systems and manageable computational complexity. Numerical Monte-Carlo simulations (MCS) demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.Comment: 26 pgs, 16 figures and 5 table

    Capacity Analysis of MIMO-WLAN Systems with Single Co-Channel Interference

    Get PDF
    [[abstract]]In this paper, channel capacity of multiple-input multiple-output wireless local area network (MIMO-WLAN) systems with single co-channel interference (CCI) is calculated. A ray-tracing approach is used to calculate the channel frequency response, which is further used to calculate the corresponding channel capacity. The ability to combat CCI for the MIMO-WLAN simple uniform linear array (ULA) and polarization diversity array (PDA) are investigated. Also the effects caused by two antenna arrays for desired system and CCI are quantified. Numerical results show that MIMO-PDA is better than those of MIMO-ULA when interference is present.[[notice]]èŁœæ­ŁćźŒç•ą[[incitationindex]]EI[[booktype]]çŽ™æœŹ[[booktype]]電歐

    DOA Estimation for Local Scattered CDMA Signals by Particle Swarm Optimization

    Get PDF
    This paper deals with the direction-of-arrival (DOA) estimation of local scattered code-division multiple access (CDMA) signals based on a particle swarm optimization (PSO) search. For conventional spectral searching estimators with local scattering, the searching complexity and estimating accuracy strictly depend on the number of search grids used during the search. In order to obtain high-resolution and accurate DOA estimation, a smaller grid size is needed. This is time consuming and it is unclear how to determine the required number of search grids. In this paper, a modified PSO is presented to reduce the required search grids for the conventional spectral searching estimator with the effects of local scattering. Finally, several computer simulations are provided for illustration and comparison

    Intelligent Processing in Wireless Communications Using Particle Swarm Based Methods

    Get PDF
    There are a lot of optimization needs in the research and design of wireless communica- tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP) hard problems and could not be solved well. Many of other non-NP-hard optimization problems are combinatorial and do not have satisfying solutions either. This dissertation presents a series of Particle Swarm Optimization (PSO) based search and optimization algorithms that solve open research and design problems in wireless communications. These problems are either avoided or solved approximately before. PSO is a bottom-up approach for optimization problems. It imposes no conditions on the underlying problem. Its simple formulation makes it easy to implement, apply, extend and hybridize. The algorithm uses simple operators like adders, and multipliers to travel through the search space and the process requires just five simple steps. PSO is also easy to control because it has limited number of parameters and is less sensitive to parameters than other swarm intelligence algorithms. It is not dependent on initial points and converges very fast. Four types of PSO based approaches are proposed targeting four different kinds of problems in wireless communications. First, we use binary PSO and continuous PSO together to find optimal compositions of Gaussian derivative pulses to form several UWB pulses that not only comply with the FCC spectrum mask, but also best exploit the avail- able spectrum and power. Second, three different PSO based algorithms are developed to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multilateration problems respectively. Third, a PSO based search method is proposed to find optimal orthogonal code sets to reduce the inter carrier interference effects in an frequency redundant OFDM system. Fourth, a PSO based phase optimization technique is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO based approaches are compared with other canonical solutions for these communication problems and showed superior performance in many aspects. which are confirmed by analysis and simulation results provided respectively. Open questions and future ï»żOpen questions and future works for the dissertation are proposed to serve as a guide for the future research efforts

    REDUCING THE PEAK TO AVERAGE POWER RATIO OF MIMO-OFDM SYSTEMS

    Get PDF
    ABSTRACT In this paper, we proposed a particle swarm optimization (PSO

    Mehrdimensionale KanalschĂ€tzung fĂŒr MIMO-OFDM

    Get PDF
    DIGITAL wireless communication started in the 1990s with the wide-spread deployment of GSM. Since then, wireless systems evolved dramatically. Current wireless standards approach the goal of an omnipresent communication system, which fulfils the wish to communicate with anyone, anywhere at anytime. Nowadays, the acceptance of smartphones and/or tablets is huge and the mobile internet is the core application. Given the current growth, the estimated data traffic in wireless networks in 2020 might be 1000 times higher than that of 2010, exceeding 127 exabyte. Unfortunately, the available radio spectrum is scarce and hence, needs to be utilized efficiently. Key technologies, such as multiple-input multiple-output (MIMO), orthogonal frequency-division multiplexing (OFDM) as well as various MIMO precoding techniques increase the theoretically achievable channel capacity considerably and are used in the majority of wireless standards. On the one hand, MIMO-OFDM promises substantial diversity and/or capacity gains. On the other hand, the complexity of optimum maximum-likelihood detection grows exponentially and is thus, not sustainable. Additionally, the required signaling overhead increases with the number of antennas and thereby reduces the bandwidth efficiency. Iterative receivers which jointly carry out channel estimation and data detection are a potential enabler to reduce the pilot overhead and approach optimum capacity at often reduced complexity. In this thesis, a graph-based receiver is developed, which iteratively performs joint data detection and channel estimation. The proposed multi-dimensional factor graph introduces transfer nodes that exploit correlation of adjacent channel coefficients in an arbitrary number of dimensions (e.g. time, frequency, and space). This establishes a simple and flexible receiver structure that facilitates soft channel estimation and data detection in multi-dimensional dispersive channels, and supports arbitrary modulation and channel coding schemes. However, the factor graph exhibits suboptimal cycles. In order to reach the maximum performance, the message exchange schedule, the process of combining messages, and the initialization are adapted. Unlike conventional approaches, which merge nodes of the factor graph to avoid cycles, the proposed message combining methods mitigate the impairing effects of short cycles and retain a low computational complexity. Furthermore, a novel detection algorithm is presented, which combines tree-based MIMO detection with a Gaussian detector. The resulting detector, termed Gaussian tree search detection, integrates well within the factor graph framework and reduces further the overall complexity of the receiver. Additionally, particle swarm optimization (PSO) is investigated for the purpose of initial channel estimation. The bio-inspired algorithm is particularly interesting because of its fast convergence to a reasonable MSE and its versatile adaptation to a variety of optimization problems. It is especially suited ïżŒfor initialization since no a priori information is required. A cooperative approach to PSO is proposed for large-scale antenna implementations as well as a multi-objective PSO for time-varying frequency-selective channels. The performance of the multi-dimensional graph-based soft iterative receiver is evaluated by means of Monte Carlo simulations. The achieved results are compared to the performance of an iterative state-of-the-art receiver. It is shown that a similar or better performance is achieved at a lower complexity. An appealing feature of iterative semi-blind channel estimation is that the supported pilot spacings may exceed the limits given the by Nyquist-Shannon sampling theorem. In this thesis, a relation between pilot spacing and channel code is formulated. Depending on the chosen channel code and code rate, the maximum spacing approaches the proposed “coded sampling bound”.Die digitale drahtlose Kommunikation begann in den 1990er Jahren mit der zunehmenden Verbreitung von GSM. Seitdem haben sich Mobilfunksysteme drastisch weiterentwickelt. Aktuelle Mobilfunkstandards nĂ€hern sich dem Ziel eines omniprĂ€senten Kommunikationssystems an und erfĂŒllen damit den Wunsch mit jedem Menschen zu jeder Zeit an jedem Ort kommunizieren zu können. Heutzutage ist die Akzeptanz von Smartphones und Tablets immens und das mobile Internet ist die zentrale Anwendung. Ausgehend von dem momentanen Wachstum wird das Datenaufkommen in Mobilfunk-Netzwerken im Jahr 2020, im Vergleich zum Jahr 2010, um den Faktor 1000 gestiegen sein und 100 Exabyte ĂŒberschreiten. UnglĂŒcklicherweise ist die verfĂŒgbare Bandbreite beschrĂ€nkt und muss daher effizient genutzt werden. SchlĂŒsseltechnologien, wie z.B. Mehrantennensysteme (multiple-input multiple-output, MIMO), orthogonale Frequenzmultiplexverfahren (orthogonal frequency-division multiplexing, OFDM) sowie weitere MIMO Codierverfahren, vergrĂ¶ĂŸern die theoretisch erreichbare KanalkapazitĂ€t und kommen bereits in der Mehrheit der Mobil-funkstandards zum Einsatz. Auf der einen Seite verspricht MIMO-OFDM erhebliche DiversitĂ€ts- und/oder KapazitĂ€tsgewinne. Auf der anderen Seite steigt die KomplexitĂ€t der optimalen Maximum-Likelihood Detektion exponientiell und ist infolgedessen nicht haltbar. ZusĂ€tzlich wĂ€chst der benötigte Mehraufwand fĂŒr die KanalschĂ€tzung mit der Anzahl der verwendeten Antennen und reduziert dadurch die Bandbreiteneffizienz. Iterative EmpfĂ€nger, die Datendetektion und KanalschĂ€tzung im Verbund ausfĂŒhren, sind potentielle Wegbereiter um den Mehraufwand des Trainings zu reduzieren und sich gleichzeitig der maximalen KapazitĂ€t mit geringerem Aufwand anzunĂ€hern. Im Rahmen dieser Arbeit wird ein graphenbasierter EmpfĂ€nger fĂŒr iterative Datendetektion und KanalschĂ€tzung entwickelt. Der vorgeschlagene multidimensionale Faktor Graph fĂŒhrt sogenannte Transferknoten ein, die die Korrelation benachbarter Kanalkoeffizienten in beliebigen Dimensionen, z.B. Zeit, Frequenz und Raum, ausnutzen. Hierdurch wird eine einfache und flexible EmpfĂ€ngerstruktur realisiert mit deren Hilfe weiche KanalschĂ€tzung und Datendetektion in mehrdimensionalen, dispersiven KanĂ€len mit beliebiger Modulation und Codierung durchgefĂŒhrt werden kann. Allerdings weist der Faktorgraph suboptimale Schleifen auf. Um die maximale Performance zu erreichen, wurde neben dem Ablauf des Nachrichtenaustausches und des Vorgangs zur Kombination von Nachrichten auch die Initialisierung speziell angepasst. Im Gegensatz zu herkömmlichen Methoden, bei denen mehrere Knoten zur Vermeidung von Schleifen zusammengefasst werden, verringern die vorgeschlagenen Methoden die leistungsmindernde Effekte von Schleifen, erhalten aber zugleich die geringe KomplexitĂ€t des EmpfĂ€ngers. ZusĂ€tzlich wird ein neuartiger Detektionsalgorithmus vorgestellt, der baumbasierte DetektionsalgoïżŒrithmen mit dem sogenannten Gauss-Detektor verknĂŒpft. Der resultierende baumbasierte Gauss-Detektor (Gaussian tree search detector) lĂ€sst sich ideal in das graphenbasierte Framework einbinden und verringert weiter die GesamtkomplexitĂ€t des EmpfĂ€ngers. ZusĂ€tzlich wird Particle Swarm Optimization (PSO) zum Zweck der initialen KanalschĂ€tzung untersucht. Der biologisch inspirierte Algorithmus ist insbesonders wegen seiner schnellen Konvergenz zu einem akzeptablen MSE und seiner vielseitigen Abstimmungsmöglichkeiten auf eine Vielzahl von Optimierungsproblemen interessant. Da PSO keine a priori Informationen benötigt, ist er speziell fĂŒr die Initialisierung geeignet. Sowohl ein kooperativer Ansatz fĂŒr PSO fĂŒr Antennensysteme mit extrem vielen Antennen als auch ein multi-objective PSO fĂŒr KanĂ€le, die in Zeit und Frequenz dispersiv sind, werden evaluiert. Die LeistungsfĂ€higkeit des multidimensionalen graphenbasierten iterativen EmpfĂ€ngers wird mit Hilfe von Monte Carlo Simulationen untersucht. Die Simulationsergebnisse werden mit denen eines dem Stand der Technik entsprechenden EmpfĂ€ngers verglichen. Es wird gezeigt, dass Ă€hnliche oder bessere Ergebnisse mit geringerem Aufwand erreicht werden. Eine weitere ansprechende Eigenschaft von iterativen semi-blinden KanalschĂ€tzern ist, dass der mögliche Abstand von Trainingssymbolen die Grenzen des Nyquist-Shannon Abtasttheorem ĂŒberschreiten kann. Im Rahmen dieser Arbeit wird eine Beziehung zwischen dem Trainingsabstand und dem Kanalcode formuliert. In AbhĂ€ngigkeit des gewĂ€hlten Kanalcodes und der Coderate folgt der maximale Trainingsabstand der vorgeschlagenen “coded sampling bound”
    • 

    corecore