14 research outputs found

    Channel Access and Power Control for Mobile Crowdsourcing in Device-to-Device Underlaid Cellular Networks

    Get PDF

    AI-Generated Incentive Mechanism and Full-Duplex Semantic Communications for Information Sharing

    Full text link
    The next generation of Internet services, such as Metaverse, rely on mixed reality (MR) technology to provide immersive user experiences. However, the limited computation power of MR headset-mounted devices (HMDs) hinders the deployment of such services. Therefore, we propose an efficient information sharing scheme based on full-duplex device-to-device (D2D) semantic communications to address this issue. Our approach enables users to avoid heavy and repetitive computational tasks, such as artificial intelligence-generated content (AIGC) in the view images of all MR users. Specifically, a user can transmit the generated content and semantic information extracted from their view image to nearby users, who can then use this information to obtain the spatial matching of computation results under their view images. We analyze the performance of full-duplex D2D communications, including the achievable rate and bit error probability, by using generalized small-scale fading models. To facilitate semantic information sharing among users, we design a contract theoretic AI-generated incentive mechanism. The proposed diffusion model generates the optimal contract design, outperforming two deep reinforcement learning algorithms, i.e., proximal policy optimization and soft actor-critic algorithms. Our numerical analysis experiment proves the effectiveness of our proposed methods. The code for this paper is available at https://github.com/HongyangDu/SemSharingComment: Accepted by IEEE JSA

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Radio Resource Management for Unmanned Aerial Vehicle Assisted Wireless Communications and Networking

    Get PDF
    In recent years, employing unmanned aerial vehicles (UAVs) as aerial communication platforms or users is envisioned as a promising solution to enhance the performance of the existing wireless communication systems. However, applying UAVs for information technology applications also introduces many new challenges. This thesis focuses on the UAV-assisted wireless communication and networking, and aims to address the challenges through exploiting and designing efficient radio resource management methods. Specifically, four research topics are studied in this thesis. Firstly, to address the constraint of network heterogeneity and leverage the benefits of diversity of UAVs, a hierarchical air-ground heterogeneous network architecture enabled by software defined networking is proposed, which integrates both high and low altitude platforms into conventional terrestrial networks to provide additional capacity enhancement and expand the coverage of current network systems. Secondly, to address the constraint of link disconnection and guarantee the reliable communications among UAVs as aerial user equipment to perform sensing tasks, a robust resource allocation scheme is designed while taking into account the dynamic features and different requirements for different UAV transmission connections. Thirdly, to address the constraint of privacy and security threat and motivate the spectrum sharing between cellular and UAV operators, a blockchain-based secure spectrum trading framework is constructed where mobile network operators and UAV operators can share spectrum in a distributed and trusted environment based on blockchain technology to protect users' privacy and data security. Fourthly, to address the constraint of low endurance of UAV and prolong its flight time as an aerial base station for delivering communication coverage in a disaster area, an energy efficiency maximization problem jointly optimizing user association, UAV's transmission power and trajectory is studied in which laser charging is exploited to supply sustainable energy to enable the UAV to operate in the sky for a long time

    Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey

    Get PDF
    Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting their relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G ecosystem. We discuss important features of NTNs integration into TNs and the synergies by delving into the new range of services and use cases, various architectures, technological enablers, and higher layer aspects pertinent to NTNs integration. Moreover, we review the corresponding challenges arising from the technical peculiarities and the new approaches being adopted to develop efficient integrated ground-air-space (GAS) networks. Our survey further includes the major progress and outcomes from academic research as well as industrial efforts representing the main industrial trends, field trials, and prototyping towards the 6G networks

    Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey

    Get PDF
    Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting their relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G ecosystem. We discuss important features of NTNs integration into TNs and the synergies by delving into the new range of services and use cases, various architectures, technological enablers, and higher layer aspects pertinent to NTNs integration. Moreover, we review the corresponding challenges arising from the technical peculiarities and the new approaches being adopted to develop efficient integrated ground-air-space (GAS) networks. Our survey further includes the major progress and outcomes from academic research as well as industrial efforts representing the main industrial trends, field trials, and prototyping towards the 6G networks

    An adaptive social-aware device-to-device communication mechanism for wireless networks

    Get PDF
    Device-to-Device (D2D) communication is an essential element in 5G networks, which enables users to communicate either directly without network assistance or with minimum signaling through a base station. For an effective D2D communication, related problems in mode and peer selection need to be addressed. In mode selection, the problem is how to guarantee selection always chooses the best available mode. In peer selection, the problem is how to select optimum peers among surrounding peers in terms of connection conditions and social relationships between peers. The main objectives of this research are to identify mode selection between devices and establishing a connection with the best D2D pair connection without privacy leakage. Multi-Attribute Decision Making and Social Choice theories are applied to achieve the objectives. Mode selection scheme is based on Received Signal Strength (RSS), delay and bandwidth attributes to choose and switch among the available modes intelligently based on the highest ranking. Then, the peering selection scheme is proposed using RSS, delay, bandwidth and power attribute to find an optimum peer with concerning social relationship, by evaluating trust level between peers and excluding the untrusted peers from ranking which will increase the optimum quality of D2D connection. The proposed schemes are validated and tested using MATLAB. Two main scenarios, namely crowded network and user speed were considered to evaluate the proposed mechanism with three existing approaches where the selection is based on a single attribute. The obtained results showed that the proposed mechanism outperforms other approaches in terms of delay, signal to noise ratio, delivery ratio and throughput with better performance up to 70%. The proposed mechanism provides a smooth switching between different modes and employs an automatic peering selection with trusted peers only. It can be applied in different types of network that serves the massive number of users with different movement speed of the user

    Channel Access and Power Control for Mobile Crowdsourcing in Device-to-Device Underlaid Cellular Networks

    No full text
    With the access of a myriad of smart handheld devices in cellular networks, mobile crowdsourcing becomes increasingly popular, which can leverage omnipresent mobile devices to promote the complicated crowdsourcing tasks. Device-to-device (D2D) communication is highly desired in mobile crowdsourcing when cellular communications are costly. The D2D cellular network is more preferable for mobile crowdsourcing than conventional cellular network. Therefore, this paper addresses the channel access and power control problem in the D2D underlaid cellular networks. We propose a novel semidistributed network-assisted power and a channel access control scheme for D2D user equipment (DUE) pieces. It can control the interference from DUE pieces to the cellular user accurately and has low information feedback overhead. For the proposed scheme, the stochastic geometry tool is employed and analytic expressions are derived for the coverage probabilities of both the cellular link and D2D links. We analyze the impact of key system parameters on the proposed scheme. The Pareto optimal access threshold maximizing the total area spectral efficiency is obtained. Unlike the existing works, the performances of the cellular link and D2D links are both considered. Simulation results show that the proposed method can improve the total area spectral efficiency significantly compared to existing schemes
    corecore