6,592 research outputs found

    Changes and bugs mining and predicting development activities

    Get PDF
    Software development results in a huge amount of data: changes to source code are recorded in version archives, bugs are reported to issue tracking systems, and communications are archived in e-mails and newsgroups. In this thesis, we present techniques for mining version archives and bug databases to understand and support software development. First, we present techniques which mine version archives for fine-grained changes. We introduce the concept of co-addition of method calls, which we use to identify patterns that describe how methods should be called. We use dynamic analysis to validate these patterns and identify violations. The co-addition of method calls can also detect cross-cutting changes, which are an indicator for concerns that could have been realized as aspects in aspect-oriented programming. Second, we present techniques to build models that can successfully predict the most defectprone parts of large-scale industrial software, in our experiments Windows Server 2003. This helps managers to allocate resources for quality assurance to those parts of a system that are expected to have most defects. The proposed measures on dependency graphs outperformed traditional complexity metrics. In addition, we found empirical evidence for a domino effect: depending on defect-prone binaries increases the chances of having defects.Software-Entwicklung fĂŒhrt zu einer großen Menge an Daten: Änderungen des Quellcodes werden in Versionsarchiven, Fehler in Problemdatenbanken und Kommunikation in E-Mails und Newsgroups archiviert. In dieser Arbeit prĂ€sentieren wir Verfahren, die solche Datenbanken analysieren, um Software-Entwicklung zu verstehen und unterstĂŒtzen. Zuerst prĂ€sentieren wir Techniken, die feinkörnige Änderungen in Versionsarchiven untersuchen. Wir konzentrieren uns dabei auf das gleichzeitige HinzufĂŒgen von Methodenaufrufen und identifizieren Muster, die beschreiben wie Methoden aufgerufen werden sollen. Außerdem validieren wir diese Muster zur Laufzeit und erkennen Verletzungen. Das gleichzeitige HinzufĂŒgen von Methodenaufrufen kann außerdem querschneidende Änderungen erkennen. Solche Änderungen sind typischerweise ein Indikator fĂŒr querschneidende FunktionalitĂ€ten, die besser mit Aspekten und aspektorientierter Programmierung realisiert werden können. Zum Abschluss der Arbeit bauen wir Fehlervorhersagemodelle, die erfolgreich die Teile von Windows Server 2003 mit den meisten Fehlern vorhersagen können. Fehlervorhersagen helfen Managern, die Ressourcen fĂŒr die QualitĂ€tssicherung gezielt auf fehlerhafte Teile einer Software zu lenken. Die auf AbhĂ€ngigkeitsgraphen basierenden Modelle erzielen dabei bessere Ergebnisse als Modelle, die auf traditionellen KomplexitĂ€tsmetriken basieren. DarĂŒber hinaus haben wir einen Domino-Effekt beobachtet: Dateien, die von fehlerhaften Dateien abhĂ€ngen, besitzen eine erhöhte Fehlerwahrscheinlichkeit

    Towards Automated Performance Bug Identification in Python

    Full text link
    Context: Software performance is a critical non-functional requirement, appearing in many fields such as mission critical applications, financial, and real time systems. In this work we focused on early detection of performance bugs; our software under study was a real time system used in the advertisement/marketing domain. Goal: Find a simple and easy to implement solution, predicting performance bugs. Method: We built several models using four machine learning methods, commonly used for defect prediction: C4.5 Decision Trees, Na\"{\i}ve Bayes, Bayesian Networks, and Logistic Regression. Results: Our empirical results show that a C4.5 model, using lines of code changed, file's age and size as explanatory variables, can be used to predict performance bugs (recall=0.73, accuracy=0.85, and precision=0.96). We show that reducing the number of changes delivered on a commit, can decrease the chance of performance bug injection. Conclusions: We believe that our approach can help practitioners to eliminate performance bugs early in the development cycle. Our results are also of interest to theoreticians, establishing a link between functional bugs and (non-functional) performance bugs, and explicitly showing that attributes used for prediction of functional bugs can be used for prediction of performance bugs

    Are developers fixing their own bugs?: Tracing bug-fixing and bug-seeding committers

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 IGI GlobalThe process of fixing software bugs plays a key role in the maintenance activities of a software project. Ideally, code ownership and responsibility should be enforced among developers working on the same artifacts, so that those introducing buggy code could also contribute to its fix. However, especially in FLOSS projects, this mechanism is not clearly understood: in particular, it is not known whether those contributors fixing a bug are the same introducing and seeding it in the first place. This paper analyzes the comm-central FLOSS project, which hosts part of the Thunderbird, SeaMonkey, Lightning extensions and Sunbird projects from the Mozilla community. The analysis is focused at the level of lines of code and it uses the information stored in the source code management system. The results of this study show that in 80% of the cases, the bug-fixing activity involves source code modified by at most two developers. It also emerges that the developers fixing the bug are only responsible for 3.5% of the previous modifications to the lines affected; this implies that the other developers making changes to those lines could have made that fix. In most of the cases the bug fixing process in comm-central is not carried out by the same developers than those who seeded the buggy code.This work has been partially funded by the European Commission, under the ALERT project (ICT-258098)
    • 

    corecore