17,455 research outputs found

    False Identity Detection Using Complex Sentences

    Get PDF
    The use of faked identities is a current issue for both physical and online security. In this paper, we test the differences between subjects who report their true identity and the ones who give fake identity responding to control, simple, and complex questions. Asking complex questions is a new procedure for increasing liars' cognitive load, which is presented in this paper for the first time. The experiment consisted in an identity verification task, during which response time and errors were collected. Twenty participants were instructed to lie about their identity, whereas the other 20 were asked to respond truthfully. Different machine learning (ML) models were trained, reaching an accuracy level around 90-95% in distinguishing liars from truth tellers based on error rate and response time. Then, to evaluate the generalization and replicability of these models, a new sample of 10 participants were tested and classified, obtaining an accuracy between 80 and 90%. In short, results indicate that liars may be efficiently distinguished from truth tellers on the basis of their response times and errors to complex questions, with an adequate generalization accuracy of the classification models

    Modeling and prediction of advanced prostate cancer

    Get PDF
    Background: Prostate cancer (PCa) is the most commonly diagnosed cancer and second leading cause of cancer-related deaths for men in Western countries. The advanced form of the disease is life-threatening with few options for curative therapies. The development of novel therapeutic alternatives would greatly benefit from a more comprehensive and tailored mathematical and statistical methodology. In particular, statistical inference of treatment effects and the prediction of time-dependent effects in both preclinical and clinical studies remains a challenging yet interesting opportunity for applied mathematicians. Such methods are likely to improve the reproducibility and translatability of results and offer possibility for novel holistic insights into disease progression, diagnosis, and prognosis. Methods: Several novel statistical and mathematical techniques were developed over the course of this thesis work for the in vivo modeling of PCa treatment responses. A matching-based, blinded randomized allocation procedure for preclinical experiments was developed that provides assistance for the statistical design of animal intervention studies, e.g., through power analysis and accounting for the stratification of individuals. For the post-intervention testing of treatment effects, two novel mixed-effects models were developed that aim to address the characteristic challenges of preclinical longitudinal experiments, including the heterogeneous response profiles observed in animal studies. Subsequently, a Finnish clinical PCa hospital registry cohort was inspected with a strong emphasis on prostate-specific antigen (PSA), the most commonly used PCa marker. After exploring the PSA trends using penalized splines, a generalized mixed-effects prediction model was implemented with a focus on the ultra-sensitive range of the PSA assay. Finally, for metastatic, aggressive PCa, an ensemble Cox regression methodology was developed for overall survival prediction in the DREAM 9.5 mCRPC Challenge based on open datasets from controlled clinical trials. Results: The advantages of the improved experimental design and two proposed statistical models were demonstrated in terms of both increased statistical power and accuracy in simulated and real preclinical testing settings. Penalized regression models applied to the clinical patient datasets support the use of PSA in the ultra-sensitive range together with a model for relapse prediction. Furthermore, the novel ensemble-based Cox regression model that was developed for the overall survival prediction in advanced PCa outperformed the state-of-the-art benchmark and all other models submitted to the Challenge and provided novel predictors of disease progression and treatment responses. Conclusions: The methods and results provide preclinical researchers and clinicians with novel tools for comprehensive modeling and prediction of PCa. All methodology is available as open source R statistical software packages and/or web-based graphical user interfaces

    Untargeted lipidomic features associated with colorectal cancer in a prospective cohort.

    Get PDF
    BackgroundEpidemiologists are beginning to employ metabolomics and lipidomics with archived blood from incident cases and controls to discover causes of cancer. Although several such studies have focused on colorectal cancer (CRC), they all followed targeted or semi-targeted designs that limited their ability to find discriminating molecules and pathways related to the causes of CRC.MethodsUsing an untargeted design, we measured lipophilic metabolites in prediagnostic serum from 66 CRC patients and 66 matched controls from the European Prospective Investigation into Cancer and Nutrition (Turin, Italy). Samples were analyzed by liquid chromatography-high-resolution mass spectrometry (LC-MS), resulting in 8690 features for statistical analysis.ResultsRather than the usual multiple-hypothesis-testing approach, we based variable selection on an ensemble of regression methods, which found nine features to be associated with case-control status. We then regressed each selected feature on time-to-diagnosis to determine whether the feature was likely to be either a potentially causal biomarker or a reactive product of disease progression (reverse causality).ConclusionsOf the nine selected LC-MS features, four appear to be involved in CRC etiology and merit further investigation in prospective studies of CRC. Four other features appear to be related to progression of the disease (reverse causality), and may represent biomarkers of value for early detection of CRC

    Temporal characteristics of the influence of punishment on perceptual decision making in the human brain

    Get PDF
    Perceptual decision making is the process by which information from sensory systems is combined and used to influence our behavior. In addition to the sensory input, this process can be affected by other factors, such as reward and punishment for correct and incorrect responses. To investigate the temporal dynamics of how monetary punishment influences perceptual decision making in humans, we collected electroencephalography (EEG) data during a perceptual categorization task whereby the punishment level for incorrect responses was parametrically manipulated across blocks of trials. Behaviorally, we observed improved accuracy for high relative to low punishment levels. Using multivariate linear discriminant analysis of the EEG, we identified multiple punishment-induced discriminating components with spatially distinct scalp topographies. Compared with components related to sensory evidence, components discriminating punishment levels appeared later in the trial, suggesting that punishment affects primarily late postsensory, decision-related processing. Crucially, the amplitude of these punishment components across participants was predictive of the size of the behavioral improvements induced by punishment. Finally, trial-by-trial changes in prestimulus oscillatory activity in the alpha and gamma bands were good predictors of the amplitude of these components. We discuss these findings in the context of increased motivation/attention, resulting from increases in punishment, which in turn yields improved decision-related processing

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1
    • …
    corecore