3,518 research outputs found

    Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Get PDF
    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems

    Supervised / unsupervised change detection

    Get PDF
    The aim of this deliverable is to provide an overview of the state of the art in change detection techniques and a critique of what could be programmed to derive SENSUM products. It is the product of the collaboration between UCAM and EUCENTRE. The document includes as a necessary requirement a discussion about a proposed technique for co-registration. Since change detection techniques require an assessment of a series of images and the basic process involves comparing and contrasting the similarities and differences to essentially spot changes, co-registration is the first step. This ensures that the user is comparing like for like. The developed programs would then be used on remotely sensed images for applications in vulnerability assessment and post-disaster recovery assessment and monitoring. One key criterion is to develop semi-automated and automated techniques. A series of available techniques are presented along with the advantages and disadvantages of each method. The descriptions of the implemented methods are included in the deliverable D2.7 ”Software Package SW2.3”. In reviewing the available change detection techniques, the focus was on ways to exploit medium resolution imagery such as Landsat due to its free-to-use license and since there is a rich historical coverage arising from this satellite series. Regarding the change detection techniques with high resolution images, this was also examined and a recovery specific change detection index is discussed in the report

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Image Classification in Remote Sensing

    Get PDF
    One of the most important functions of remote sensing data is the production of Land Use and Land Cover maps and thus can be managed through a process called image classification. This paper looks into the following components related to the image classification process and procedures and image classification techniques and explains two common techniques K-means Classifier and Support Vector Machine (SVM). Keywords: Remote Sensing, Image Classification, K-means Classifier, Support Vector Machin

    Continuous Iterative Guided Spectral Class Rejection Classification Algorithm: Part 1

    Get PDF
    This paper outlines the changes necessary to convert the iterative guided spectral class rejection (IGSCR) classification algorithm to a soft classification algorithm. IGSCR uses a hypothesis test to select clusters to use in classification and iteratively refines clusters not yet selected for classification. Both steps assume that cluster and class memberships are crisp (either zero or one). In order to make soft cluster and class assignments (between zero and one), a new hypothesis test and iterative refinement technique are introduced that are suitable for soft clusters. The new hypothesis test, called the (class) association significance test, is based on the normal distribution, and a proof is supplied to show that the assumption of normality is reasonable. Soft clusters are iteratively refined by creating new clusters using information contained in a targeted soft cluster. Soft cluster evaluation and refinement can then be combined to form a soft classification algorithm, continuous iterative guided spectral class rejection (CIGSCR)
    corecore