1,047 research outputs found

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Do-it-yourself instruments and data processing methods for developing marine citizen observatories

    Get PDF
    La consulta íntegra de la tesi, inclosos els articles no comunicats públicament per drets d'autor, es pot realitzar prèvia petició a l'Arxiu de la UPCWater is the most important resource for living on planet Earth, covering more than 70% of its surface. The oceans represent more than 97% of the planet total water and they are where more than the 99.5% of the living beings are concentrated. A great number of ecosystems depend on the health of these oceans; their study and protection are necessary. Large datasets over long periods of time and over wide geographical areas can be required to assess the health of aquatic ecosystems. The funding needed for data collection is considerable and limited, so it is important to look at new cost-effective ways of obtaining and processing marine environmental data. The feasible solution at present is to develop observational infrastructures that may increase significantly the conventional sampling capabilities. In this study we promote to achieve this solution with the implementation of Citizen Observatories, based on volunteer participation. Citizen observatories are platforms that integrate the latest information technologies to digitally connect citizens, improving observation skills for developing a new type of research known as Citizen Science. Citizen science has the potential to increase the knowledge of the environment, and aquatic ecosystems in particular, through the use of people with no specific scientific training to collect and analyze large data sets. We believe that citizen science based tools -open source software coupled with low-cost do-it-yourself hardware- can help to close the gap between science and citizens in the oceanographic field. As the public is actively engaged in the analysis of data, the research also provides a strong avenue for public education. This is the objective of this thesis, to demonstrate how open source software and low-cost do-it-yourself hardware are effectively applied to oceanographic research and how can it develop into citizen science. We analyze four different scenarios where this idea is demonstrated: an example of using open source software for video analysis where lobsters were monitored; a demonstration of using similar video processing techniques on in-situ low-cost do-it-yourself hardware for submarine fauna monitoring; a study using open source machine learning software as a method to improve biological observations; and last but not least, some preliminar results, as proof of concept, of how manual water sampling could be replaced by low-cost do-it-yourself hardware with optical sensors.L’aigua és el recurs més important per la vida al planeta Terra, cobrint més del 70% de la seva superfície. Els oceans representen més del 70% de tota l'aigua del planeta, i és on estan concentrats més del 99.5% dels éssers vius. Un gran nombre d'ecosistemes depenen de la salut d'aquests oceans; el seu estudi i protecció són necessaris. Grans conjunts de dades durant llargs períodes de temps i al llarg d’amples àrees geogràfiques poden ser necessaris per avaluar la salut dels ecosistemes aquàtics. El finançament necessari per aquesta recol·lecció de dades és considerable però limitat, i per tant és important trobar noves formes més rendibles d’obtenir i processar dades mediambientals marines. La solució factible actualment és la de desenvolupar infraestructures observacionals que puguin incrementar significativament les capacitats de mostreig convencionals. En aquest estudi promovem que es pot assolir aquesta solució amb la implementació d’Observatoris Ciutadans, basats en la participació de voluntaris. Els observatoris ciutadans són plataformes que integren les últimes tecnologies de la informació amb ciutadans digitalment connectats, millorant les capacitats d’observació, per desenvolupar un nou tipus de recerca coneguda com a Ciència Ciutadana. La ciència ciutadana té el potencial d’incrementar el coneixement del medi ambient, i dels ecosistemes aquàtics en particular, mitjançant l'ús de persones sense coneixement científic específic per recollir i analitzar grans conjunts de dades. Creiem que les eines basades en ciència ciutadana -programari lliure juntament amb maquinari de baix cost i del tipus "fes-ho tu mateix" (do-it-yourself en anglès)- poden ajudar a apropar la ciència del camp oceanogràfic als ciutadans. A mesura que el gran públic participa activament en l'anàlisi de dades, la recerca esdevé també una nova via d’educació pública. Aquest és l’objectiu d’aquesta tesis, demostrar com el programari lliure i el maquinari de baix cost "fes-ho tu mateix" s’apliquen de forma efectiva a la recerca oceanogràfica i com pot desenvolupar-se cap a ciència ciutadana. Analitzem quatre escenaris diferents on es demostra aquesta idea: un exemple d’ús de programari lliure per anàlisi de vídeos de monitoratge de llagostes; una demostració utilitzant tècniques similars de processat de vídeo en un dispositiu in-situ de baix cost "fes-ho tu mateix" per monitoratge de fauna submarina; un estudi utilitzant programari lliure d’aprenentatge automàtic (machine learning en anglès) com a mètode per millorar observacions biològiques; i finalment uns resultats preliminars, com a prova de la seva viabilitat, de com un mostreig manual de mostres d’aigua podria ser reemplaçat per maquinari de baix cost "fes-ho tu mateix" amb sensors òptics.Postprint (published version

    Computer vision enables short- and long-term analysis of <i>Lophelia pertusa</i> polyp behaviour and colour from an underwater observatory

    Get PDF
    An array of sensors, including an HD camera mounted on a Fixed Underwater Observatory (FUO) were used to monitor a cold-water coral (Lophelia pertusa) reef in the Lofoten-Vesterålen area from April to November 2015. Image processing and deep learning enabled extraction of time series describing changes in coral colour and polyp activity (feeding). The image data was analysed together with data from the other sensors from the same period, to provide new insights into the short- and long-term dynamics in polyp features. The results indicate that diurnal variations and tidal current influenced polyp activity, by controlling the food supply. On a longer time-scale, the coral’s tissue colour changed from white in the spring to slightly red during the summer months, which can be explained by a seasonal change in food supply. Our work shows, that using an effective integrative computational approach, the image time series is a new and rich source of information to understand and monitor the dynamics in underwater environments due to the high temporal resolution and coverage enabled with FUOs

    Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory.

    Get PDF
    Osterloff J, Nilssen I, Jarnegren J, Van Engeland T, Buhl-Mortensen P, Nattkemper TW. Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports. 2019;9(1): 6578.An array of sensors, including an HD camera mounted on a Fixed Underwater Observatory (FUO) were used to monitor a cold-water coral (Lophelia pertusa) reef in the Lofoten-Vesteralen area from April to November 2015. Image processing and deep learning enabled extraction of time series describing changes in coral colour and polyp activity (feeding). The image data was analysed together with data from the other sensors from the same period, to provide new insights into the short- and long-term dynamics in polyp features. The results indicate that diurnal variations and tidal current influenced polyp activity, by controlling the food supply. On a longer time-scale, the coral's tissue colour changed from white in the spring to slightly red during the summer months, which can be explained by a seasonal change in food supply. Our work shows, that using an effective integrative computational approach, the image time series is a new and rich source of information to understand and monitor the dynamics in underwater environments due to the high temporal resolution and coverage enabled with FUOs

    Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data

    Get PDF
    This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and

    Do-it-yourself instruments and data processing methods for developing marine citizen observatories

    Get PDF
    Water is the most important resource for living on planet Earth, covering more than 70% of its surface. The oceans represent more than 97% of the planet total water and they are where more than the 99.5% of the living beings are concentrated. A great number of ecosystems depend on the health of these oceans; their study and protection are necessary. Large datasets over long periods of time and over wide geographical areas can be required to assess the health of aquatic ecosystems. The funding needed for data collection is considerable and limited, so it is important to look at new cost-effective ways of obtaining and processing marine environmental data. The feasible solution at present is to develop observational infrastructures that may increase significantly the conventional sampling capabilities. In this study we promote to achieve this solution with the implementation of Citizen Observatories, based on volunteer participation. Citizen observatories are platforms that integrate the latest information technologies to digitally connect citizens, improving observation skills for developing a new type of research known as Citizen Science. Citizen science has the potential to increase the knowledge of the environment, and aquatic ecosystems in particular, through the use of people with no specific scientific training to collect and analyze large data sets. We believe that citizen science based tools -open source software coupled with low-cost do-it-yourself hardware- can help to close the gap between science and citizens in the oceanographic field. As the public is actively engaged in the analysis of data, the research also provides a strong avenue for public education. This is the objective of this thesis, to demonstrate how open source software and low-cost do-it-yourself hardware are effectively applied to oceanographic research and how can it develop into citizen science. We analyze four different scenarios where this idea is demonstrated: an example of using open source software for video analysis where lobsters were monitored; a demonstration of using similar video processing techniques on in-situ low-cost do-it-yourself hardware for submarine fauna monitoring; a study using open source machine learning software as a method to improve biological observations; and last but not least, some preliminar results, as proof of concept, of how manual water sampling could be replaced by low-cost do-it-yourself hardware with optical sensors.L’aigua és el recurs més important per la vida al planeta Terra, cobrint més del 70% de la seva superfície. Els oceans representen més del 70% de tota l'aigua del planeta, i és on estan concentrats més del 99.5% dels éssers vius. Un gran nombre d'ecosistemes depenen de la salut d'aquests oceans; el seu estudi i protecció són necessaris. Grans conjunts de dades durant llargs períodes de temps i al llarg d’amples àrees geogràfiques poden ser necessaris per avaluar la salut dels ecosistemes aquàtics. El finançament necessari per aquesta recol·lecció de dades és considerable però limitat, i per tant és important trobar noves formes més rendibles d’obtenir i processar dades mediambientals marines. La solució factible actualment és la de desenvolupar infraestructures observacionals que puguin incrementar significativament les capacitats de mostreig convencionals. En aquest estudi promovem que es pot assolir aquesta solució amb la implementació d’Observatoris Ciutadans, basats en la participació de voluntaris. Els observatoris ciutadans són plataformes que integren les últimes tecnologies de la informació amb ciutadans digitalment connectats, millorant les capacitats d’observació, per desenvolupar un nou tipus de recerca coneguda com a Ciència Ciutadana. La ciència ciutadana té el potencial d’incrementar el coneixement del medi ambient, i dels ecosistemes aquàtics en particular, mitjançant l'ús de persones sense coneixement científic específic per recollir i analitzar grans conjunts de dades. Creiem que les eines basades en ciència ciutadana -programari lliure juntament amb maquinari de baix cost i del tipus "fes-ho tu mateix" (do-it-yourself en anglès)- poden ajudar a apropar la ciència del camp oceanogràfic als ciutadans. A mesura que el gran públic participa activament en l'anàlisi de dades, la recerca esdevé també una nova via d’educació pública. Aquest és l’objectiu d’aquesta tesis, demostrar com el programari lliure i el maquinari de baix cost "fes-ho tu mateix" s’apliquen de forma efectiva a la recerca oceanogràfica i com pot desenvolupar-se cap a ciència ciutadana. Analitzem quatre escenaris diferents on es demostra aquesta idea: un exemple d’ús de programari lliure per anàlisi de vídeos de monitoratge de llagostes; una demostració utilitzant tècniques similars de processat de vídeo en un dispositiu in-situ de baix cost "fes-ho tu mateix" per monitoratge de fauna submarina; un estudi utilitzant programari lliure d’aprenentatge automàtic (machine learning en anglès) com a mètode per millorar observacions biològiques; i finalment uns resultats preliminars, com a prova de la seva viabilitat, de com un mostreig manual de mostres d’aigua podria ser reemplaçat per maquinari de baix cost "fes-ho tu mateix" amb sensors òptics

    Exploring space situational awareness using neuromorphic event-based cameras

    Get PDF
    The orbits around earth are a limited natural resource and one that hosts a vast range of vital space-based systems that support international systems use by both commercial industries, civil organisations, and national defence. The availability of this space resource is rapidly depleting due to the ever-growing presence of space debris and rampant overcrowding, especially in the limited and highly desirable slots in geosynchronous orbit. The field of Space Situational Awareness encompasses tasks aimed at mitigating these hazards to on-orbit systems through the monitoring of satellite traffic. Essential to this task is the collection of accurate and timely observation data. This thesis explores the use of a novel sensor paradigm to optically collect and process sensor data to enhance and improve space situational awareness tasks. Solving this issue is critical to ensure that we can continue to utilise the space environment in a sustainable way. However, these tasks pose significant engineering challenges that involve the detection and characterisation of faint, highly distant, and high-speed targets. Recent advances in neuromorphic engineering have led to the availability of high-quality neuromorphic event-based cameras that provide a promising alternative to the conventional cameras used in space imaging. These cameras offer the potential to improve the capabilities of existing space tracking systems and have been shown to detect and track satellites or ‘Resident Space Objects’ at low data rates, high temporal resolutions, and in conditions typically unsuitable for conventional optical cameras. This thesis presents a thorough exploration of neuromorphic event-based cameras for space situational awareness tasks and establishes a rigorous foundation for event-based space imaging. The work conducted in this project demonstrates how to enable event-based space imaging systems that serve the goals of space situational awareness by providing accurate and timely information on the space domain. By developing and implementing event-based processing techniques, the asynchronous operation, high temporal resolution, and dynamic range of these novel sensors are leveraged to provide low latency target acquisition and rapid reaction to challenging satellite tracking scenarios. The algorithms and experiments developed in this thesis successfully study the properties and trade-offs of event-based space imaging and provide comparisons with traditional observing methods and conventional frame-based sensors. The outcomes of this thesis demonstrate the viability of event-based cameras for use in tracking and space imaging tasks and therefore contribute to the growing efforts of the international space situational awareness community and the development of the event-based technology in astronomy and space science applications

    Computer Vision for Marine Environmental Monitoring

    Get PDF
    Osterloff J. Computer Vision for Marine Environmental Monitoring. Bielefeld: Universität Bielefeld; 2018.Ocean exploration using imaging techniques has recently become very popular as camera systems became affordable and technique developed further. Marine imaging provides a unique opportunity to monitor the marine environment. The visual exploration using images allows to explore the variety of fauna, flora and geological structures of the marine environment. This monitoring creates a bottleneck as a manual evaluation of the large amounts of underwater image data is very time consuming. Information encapsulated in the images need to be extracted so that they can be included in statistical analyzes. Objects of interest (OOI) have to be localized and identified in the recorded images. In order to overcome the bottleneck, computer vision (CV) is applied in this thesis to extract the image information (semi-) automatically. A pre-evaluation of the images by marking OOIs manually, i.e. the manual annotation process, is necessary to provide examples for the applied CV methods. Five major challenges are identified in this thesis to apply of CV for marine environmental monitoring. The challenges can be grouped into challenges caused by underwater image acquisition and by the use of manual annotations for machine learning (ML). The image acquisition challenges are the optical properties challenge, e.g. a wavelength dependent attenuation underwater, and the dynamics of these properties, as different amount of matter in the water column affect colors and illumination in the images. The manual annotation challenges for applying ML for underwater images are, the low number of available manual annotations, the quality of the annotations in terms of correctness and reproducibility and the spatial uncertainty of them. The latter is caused by allowing a spatial uncertainty to speed up the manual annotation process e.g. using point annotations instead of fully outlining OOIs on a pixel level. The challenges are resolved individually in four different new CV approaches. The individual CV approaches allow to extract new biologically relevant information from time-series images recorded underwater. Manual annotations provide the ground truth for the CV systems and therefore for the included ML. Placing annotations manually in underwater images is a challenging task. In order to assess the quality in terms of correctness and reproducibility a detailed quality assessment for manual annotations is presented. This includes the computation of a gold standard to increase the quality of the ground truth for the ML. In the individually tailored CV systems, different ML algorithms are applied and adapted for marine environmental monitoring purposes. Applied ML algorithms cover a broad variety from unsupervised to supervised methods, including deep learning algorithms. Depending on the biologically motivated research question, systems are evaluated individually. The first two CV systems are developed for the _in-situ_ monitoring of the sessile species _Lophelia pertusa_. Visual information of the cold-water coral is extracted automatically from time-series images recorded by a fixed underwater observatory (FUO) located at 260 m depth and 22 km off the Norwegian coast. Color change of a cold water coral reef over time is quantified and the polyp activity of the imaged coral is estimated (semi-) automatically. The systems allow for the first time to document an _in-situ_ change of color of a _Lophelia pertusa_ coral reef and to estimate the polyp activity for half a year with a temporal resolution of one hour. The third CV system presented in this thesis allows to monitor the mobile species shrimp _in-situ_. Shrimp are semitransparent creating additional challenges for localization and identification in images using CV. Shrimp are localized and identified in time-series images recorded by the same FUO. Spatial distribution and temporal occurrence changes are observed by comparing two different time periods. The last CV system presented in this thesis is developed to quantify the impact of sedimentation on calcareous algae samples in a _wet-lab_ experiment. The size and color change of the imaged samples over time can be quantified using a consumer camera and a color reference plate placed in the field of view for each recorded image. Extracting biologically relevant information from underwater images is only the first step for marine environmental monitoring. The extracted image information, like behavior or color change, needs to be related to other environmental parameters. Therefore, also data science methods are applied in this thesis to unveil some of the relations between individual species' information extracted semi-automatically from underwater images and other environmental parameters

    Automated detection in benthic images for megafauna classification and marine resource exploration: supervised and unsupervised methods for classification and regression tasks in benthic images with efficient integration of expert knowledge

    Get PDF
    Schoening T. Automated detection in benthic images for megafauna classification and marine resource exploration: supervised and unsupervised methods for classification and regression tasks in benthic images with efficient integration of expert knowledge. Bielefeld: Universitätsbibliothek Bielefeld; 2015.Image acquisition of deep sea floors allows to cast a glance on an extraordinary environment. Exploring the rarely known geology and biology of the deep sea regularly questions the scientific understanding of occurring conditions, processes and changes. Increasing sampling efforts, by both more frequent image acquisition as well as widespread monitoring of large areas, currently refine the scientific models about this environment. Accompanied by the sampling efforts, novel challenges emerge for the image based marine research. These include growing data volume, growing data variety and increased velocity at which data is acquired. Apart from the included technical challenges, the fundamental problem is to add semantics to the acquired data to extract further meaning and gain derived knowledge. Manual analysis of the data in terms of manually annotating images (e.g. annotating occurring species to gain species interaction knowledge) is an intricate task and has become infeasible due to the huge data volumes. The combination of data and interpretation challenges calls for automated approaches based on pattern recognition and especially computer vision methods. These methods have been applied in other fields to add meaning to visual data but have rarely been applied to the peculiar case of marine imaging. First of all, the physical factors of the environment constitute a unique computer vision challenge and require special attention in adapting the methods. Second, the impossibility to create a reliable reference gold standard from multiple field expert annotations challenges the development and evaluation of automated, pattern recognition based approaches. In this thesis, novel automated methods to add semantics to benthic images are presented that are based on common pattern recognition techniques. Three major benthic computer vision scenarios are addressed: the detection of laser points for scale quantification, the detection and classification of benthic megafauna for habitat composition assessments and the detection and quantity estimation of benthic mineral resources for deep sea mining. All approaches to address these scenarios are fitted to the peculiarities of the marine environment. The primary paradigm, that guided the development of all methods, was to design systems that can be operated by field experts without knowledge about the applied pattern recognition methods. Therefore, the systems have to be generally applicable to arbitrary image based detection scenarios. This in turn makes them applicable in other computer vision fields outside the marine environment as well. By tuning system parameters automatically from field expert annotations and applying methods that cope with errors in those annotations, the limitations of inaccurate gold standards can be bypassed. This allows to use the developed systems to further refine the scientific models based on automated image analysis

    Involving Citizen Scientists in Biodiversity Observation

    Get PDF
    The involvement of non-professionals in scientific research and environmental monitoring, termed Citizen Science (CS), has now become a mainstream approach for collecting data on earth processes, ecosystems and biodiversity. This chapter examines how CS might contribute to ongoing efforts in biodiversity monitoring, enhancing observation and recording of key species and systems in a standardised manner, thereby supporting data relevant to the Essential Biodiversity Variables (EBVs), as well as reaching key constituencies who would benefit Biodiversity Observation Networks (BONs). The design of successful monitoring or observation networks that rely on citizen observers requires a careful balancing of the two primary user groups, namely data users and data contributors (i.e., citizen scientists). To this end, this chapter identifies examples of successful CS programs as well as considering practical issues such as the reliability of the data, participant recruitment and motivation, and the use of emerging technologies
    • …
    corecore