1,011 research outputs found

    Segmentation Methods for Synthetic Aperture Radar

    Get PDF

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Semi-automatic city model extraction from tri-stereoscopic VHR satellite imagery

    Get PDF
    In this paper a methodology and results of semi-automatic city DSM extraction from an Ikonos triplet, is introduced. Built-up areas are known as being complex for photogrammetric purposes, mainly because of the steep changes in elevation caused by buildings and urban features. To make surface model extraction more robust and to cope with the specific problems of height displacement, concealed areas and shadow, a multi-image based approach is followed. For the VHR tri-stereoscopic study an area extending from the centre of Istanbul to the urban fringe is chosen. Research concentrates on the development of methods to optimize the extraction of a surface model from the bundled Ikonos triplet over an urban area, without manual plotting of buildings. Optimal methods need to be found to improve the radiometry and geometric alignment of the multi-temporal imagery, to optimize the semi-automatical derivation of DSMs from an urban environment and to enhance the quality of the resulting surface model and especially to reduce smoothing effects by applying spatial filters

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons

    Segmentation of neuroanatomy in magnetic resonance images

    Get PDF
    Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume measurement, feature extraction and for the three-dimensional display of neuroanatomy. This thesis proposes several automated and semi-automated methods which offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. Work has concentrated on the use of dual echo multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric nature of MRI. Such data is widely acquired clinically and segmentation therefore does not require additional scans. The literature has been reviewed. Factors affecting image non-uniformity for a modem 1.5 Tesla imager have been investigated. These investigations demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be applied to data as a pre-processing step. The merit of using an anisotropic smoothing method for noisy data has been demonstrated. Several approaches to neurological MRI segmentation have been developed. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing, two threshold based techniques and a fast radial CSF identification approach are proposed to identify the intracranial region contour in each slice of the data set. Once isolated, the intracranial region is further processed to identify CSF, and, depending upon the MRI pulse sequence used, the brain itself may be sub-divided into grey matter and white matter using semiautomatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis (MS) plaques has also been considered. The utility of the stack, a data driven multi-resolution approach to segmentation, has been investigated, and several improvements to the method suggested. The factors affecting the intrinsic accuracy of neurological volume measurement in MRI have been studied and their magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and object independent - has been considered, as well as slice warp, slice profile, slice position and the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in this thesis have been evaluated. Intracranial volume measurements are within 5% of expert observers' measurements, white matter volumes within 10%, and CSF volumes consistently lower than the expert observers' measurements due to the observers' inability to take the partial volume effect into account

    Deposition and characterization of laser-ablated silicon

    Get PDF
    Laser ablation is a powerful thin film deposition and material processing technology. In the Nonlinear Nanostructure Lab at NJIT, silicon films deposited by laser ablation have been studied for the potential applications in nonlinear optoelectronic devices. The previous studies have suggested that the deposited silicon has a hexagonal symmetry, being a polymorph of silicon that previously has been obtained only at very high pressure. This thesis is part of the continuous study and characterization of this new structure. The objective of the research was to gain better understanding of the hexagonal silicon properties as well as the mechanism that lead to hexagonal silicon formation. The laser ablation of the silicon nanostructure was done with nanosecond pulsed 532 nm ultraviolet laser in vacuum chamber. Different substrates of quartz and aluminum-coated quartz were used. The ablated silicon film consists of a smooth featureless matrix embedded with crystalline droplets. The micro-Raman spectra measurements revealed that the droplets have a hexagonal symmetry. The topographical properties were studied with combination of scanning electron microscope and atomic force microscope. And its mechanical properties were investigated by nanoidentation using scanning force microscope. The effects of annealing were studied under different temperature and annealing ambient. The annealing conditions that convert the hexagonal silicon to cubic diamond silicon were established. Based on the study, a tentative mechanism of forming the hexagonal silicon was proposed
    corecore