41,687 research outputs found

    Bayesian Model Search for Nonstationary Periodic Time Series

    Get PDF
    We propose a novel Bayesian methodology for analyzing nonstationary time series that exhibit oscillatory behaviour. We approximate the time series using a piecewise oscillatory model with unknown periodicities, where our goal is to estimate the change-points while simultaneously identifying the potentially changing periodicities in the data. Our proposed methodology is based on a trans-dimensional Markov chain Monte Carlo (MCMC) algorithm that simultaneously updates the change-points and the periodicities relevant to any segment between them. We show that the proposed methodology successfully identifies time changing oscillatory behaviour in two applications which are relevant to e-Health and sleep research, namely the occurrence of ultradian oscillations in human skin temperature during the time of night rest, and the detection of instances of sleep apnea in plethysmographic respiratory traces.Comment: Received 23 Oct 2018, Accepted 12 May 201

    Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes

    Get PDF
    We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances subdiffusion, and eventually leads to hop diffusion of lipids. Thus, we present a minimum realistic model for membrane rafts showing the features of both microscopic phase separation and subdiffusion.Comment: 21 pages, 5 figures; Supporting Material 5 pages, 1 figure, 1 tabl

    The Rotation of M Dwarfs Observed by the Apache Point Galactic Evolution Experiment

    Full text link
    We present the results of a spectroscopic analysis of rotational velocities in 714 M dwarf stars observed by the SDSS III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template fitting technique to estimate vsiniv\sin{i} while simultaneously estimating logg\log{g}, [M/H][\text{M}/\text{H}], and TeffT_{\text{eff}}. We conservatively estimate that our detection limit is 8 km s1^{-1}. We compare our results to M dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M44 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases were the measured vsiniv\sin{i} and rotation period are physically inconsistent, requiring sini>1\sin{i}>1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M44 transition by a factor of 2\sim 2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bi-modal distribution in rotation that is seen in photometric surveys.Comment: 31 pages, 11 figures, 4 tables. Accepted for publication by A

    Detection of Very Low-Frequency Quasi-Periodic Oscillations in the 2015 Outburst of V404 Cygni

    Get PDF
    In June 2015, the black hole X-ray binary (BHXRB) V404 Cygni went into outburst for the first time since 1989. Here, we present a comprehensive search for quasi-periodic oscillations (QPOs) of V404 Cygni during its recent outburst, utilizing data from six instruments on board five different X-ray missions: Swift/XRT, Fermi/GBM, Chandra/ACIS, INTEGRAL's IBIS/ISGRI and JEM-X, and NuSTAR. We report the detection of a QPO at 18 mHz simultaneously with both Fermi/GBM and Swift/XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital inclination. Additionally, we find a duo of QPOs in a Chandra/ACIS observation at 73 mHz and 1.03 Hz, as well as a QPO at 136 mHz in a single Swift/XRT observation that can be interpreted as standard Type-C QPOs. Aside from the detected QPOs, there is significant structure in the broadband power, with a strong feature observable in the Chandra observations between 0.1 and 1 Hz. We discuss our results in the context of current models for QPO formation.Comment: 17 pages, 9 figures, published in Ap

    Exploiting correlogram structure for robust speech recognition with multiple speech sources

    Get PDF
    This paper addresses the problem of separating and recognising speech in a monaural acoustic mixture with the presence of competing speech sources. The proposed system treats sound source separation and speech recognition as tightly coupled processes. In the first stage sound source separation is performed in the correlogram domain. For periodic sounds, the correlogram exhibits symmetric tree-like structures whose stems are located on the delay that corresponds to multiple pitch periods. These pitch-related structures are exploited in the study to group spectral components at each time frame. Local pitch estimates are then computed for each spectral group and are used to form simultaneous pitch tracks for temporal integration. These processes segregate a spectral representation of the acoustic mixture into several time-frequency regions such that the energy in each region is likely to have originated from a single periodic sound source. The identified time-frequency regions, together with the spectral representation, are employed by a `speech fragment decoder' which employs `missing data' techniques with clean speech models to simultaneously search for the acoustic evidence that best matches model sequences. The paper presents evaluations based on artificially mixed simultaneous speech utterances. A coherence-measuring experiment is first reported which quantifies the consistency of the identified fragments with a single source. The system is then evaluated in a speech recognition task and compared to a conventional fragment generation approach. Results show that the proposed system produces more coherent fragments over different conditions, which results in significantly better recognition accuracy

    Resonant Orbits and the High Velocity Peaks Towards the Bulge

    Full text link
    We extract the resonant orbits from an N-body bar that is a good representation of the Milky Way, using the method recently introduced by Molloy et al. (2015). By decomposing the bar into its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape towards the Galactic centre. The resonant orbits are shown to have distinct kinematic features and may be used to explain the cold velocity peak seen in the APOGEE commissioning data (Nidever at al., 2012). We show that high velocity peaks are a natural consequence of the motions of stars in the 2:1 orbit family and that stars on other higher order resonances can contribute to the peaks. The locations of the peaks vary with bar angle and, with the tacit assumption that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks correspond to bar angles in the range 10 < theta_bar < 25 (deg). However, some important questions about the nature of the peaks remain, such as their apparent absence in other surveys of the Bulge and the deviations from symmetry between equivalent fields in the north and south. We show that the absence of a peak in surveys at higher latitudes is likely due to the combination of a less prominent peak and a lower number density of bar supporting orbits at these latitudes.Comment: 7 Figures, 1 Table, Now includes figures & discussion of higher order resonances, Minor revisions to text throughout, Conclusions unchange
    corecore