18,516 research outputs found

    Quantifying Eulerian Eddy Leakiness in an Idealized Model

    Get PDF
    An idealized eddy‐resolving ocean basin, closely resembling the North Pacific Ocean, is simulated using MITgcm. We identify rotationally coherent Lagrangian vortices (RCLVs) and sea surface height (SSH) eddies based on the Lagrangian and Eulerian framework, respectively. General statistical results show that RCLVs have a much smaller coherent core than SSH eddies with the ratio of radius is about 0.5. RCLVs are often enclosed by SSH anomaly contours, but SSH eddy identification method fails to detect more than half of RCLVs. Based on their locations, two types of eddies are classified into three categories: overlapping RCLVs and SSH eddies, nonoverlapping SSH eddies, and nonoverlapping RCLVs. Using Lagrangian particles, we examine the processes of leakage and intrusion around SSH eddies. For overlapping SSH eddies, over the lifetime, the material coherent core only accounts for about 25% and about 50% of initial water leak from eddy interior. The remaining 25% of water can still remain inside the boundary, but only in the form of filaments outside the coherent core. For nonoverlapping SSH eddies, more water leakage (about 60%) occurs at a faster rate. Guided by the number and radius of SSH eddies, fixed circles and moving circles are randomly selected to diagnose the material flux around these circles. We find that the leakage and intrusion trends of moving circles are quite similar to that of nonoverlapping SSH eddies, suggesting that the material coherence properties of nonoverlapping SSH eddies are not significantly different from random pieces of ocean with the same size

    Ocean Eddy Identification and Tracking using Neural Networks

    Full text link
    Global climate change plays an essential role in our daily life. Mesoscale ocean eddies have a significant impact on global warming, since they affect the ocean dynamics, the energy as well as the mass transports of ocean circulation. From satellite altimetry we can derive high-resolution, global maps containing ocean signals with dominating coherent eddy structures. The aim of this study is the development and evaluation of a deep-learning based approach for the analysis of eddies. In detail, we develop an eddy identification and tracking framework with two different approaches that are mainly based on feature learning with convolutional neural networks. Furthermore, state-of-the-art image processing tools and object tracking methods are used to support the eddy tracking. In contrast to previous methods, our framework is able to learn a representation of the data in which eddies can be detected and tracked in more objective and robust way. We show the detection and tracking results on sea level anomalies (SLA) data from the area of Australia and the East Australia current, and compare our two eddy detection and tracking approaches to identify the most robust and objective method.Comment: accepted for International Geoscience and Remote Sensing Symposium 201

    Enduring Lagrangian coherence of a Loop Current ring assessed using independent observations

    Get PDF
    Ocean flows are routinely inferred from low-resolution satellite altimetry measurements of sea surface height assuming a geostrophic balance. Recent nonlinear dynamical systems techniques have revealed that surface currents derived from altimetry can support mesoscale eddies with material boundaries that do not filament for many months, thereby representing effective transport mechanisms. However, the long-range Lagrangian coherence assessed for mesoscale eddy boundaries detected from altimetry is constrained by the impossibility of current altimeters to resolve ageostrophic submesoscale motions. These may act to prevent Lagrangian coherence from manifesting in the rigorous form described by the nonlinear dynamical systems theories. Here we use a combination of satellite ocean color and surface drifter trajectory data, rarely available simultaneously over an extended period of time, to provide observational evidence for the enduring Lagrangian coherence of a Loop Current ring detected from altimetry. We also seek indications of this behavior in the flow produced by a data-assimilative system which demonstrated ability to reproduce observed relative dispersion statistics down into the marginally submesoscale range. However, the simulated flow, total surface and subsurface or subsampled emulating altimetry, is not found to support the long-lasting Lagrangian coherence that characterizes the observed ring. This highlights the importance of the Lagrangian metrics produced by the nonlinear dynamical systems tools employed here in assessing model performance.Comment: In press in nature.com/Scientific Report

    Jets and Topography: Jet Transitions and the Impact on Transport in the Antarctic Circumpolar Current

    Get PDF
    The Southern Ocean’s Antarctic Circumpolar Current (ACC) naturally lends itself to interpretations using a zonally averaged framework. Yet, navigation around steep and complicated bathymetric obstacles suggests that local dynamics may be far removed from those described by zonally symmetric models. In this study, both observational and numerical results indicate that zonal asymmetries, in the form of topography, impact global flow structure and transport properties. The conclusions are based on a suite of more than 1.5 million virtual drifter trajectories advected using a satellite altimetry–derived surface velocity field spanning 17 years. The focus is on sites of “cross front” transport as defined by movement across selected sea surface height contours that correspond to jets along most of the ACC. Cross-front exchange is localized in the lee of bathymetric features with more than 75% of crossing events occurring in regions corresponding to only 20% of the ACC’s zonal extent. These observations motivate a series of numerical experiments using a two-layer quasigeostrophic model with simple, zonally asymmetric topography, which often produces transitions in the front structure along the channel. Significantly, regimes occur where the equilibrated number of coherent jets is a function of longitude and transport barriers are not periodic. Jet reorganization is carried out by eddy flux divergences acting to both accelerate and decelerate the mean flow of the jets. Eddy kinetic energy is amplified downstream of topography due to increased baroclinicity related to topographic steering. The combination of high eddy kinetic energy and recirculation features enhances particle exchange. These results stress the complications in developing consistent circumpolar definitions of the ACC fronts

    Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin

    Get PDF
    Transport and mixing properties of surface currents can be detected from altimetric data by both Eulerian and Lagrangian diagnostics. In contrast with Eulerian diagnostics, Lagrangian tools like the local Lyapunov exponents have the advantage of exploiting both spatial and temporal variability of the velocity field and are in principle able to unveil subgrid filaments generated by chaotic stirring. However, one may wonder whether this theoretical advantage is of practical interest in real-data, mesoscale and submesoscale analysis, because of the uncertainties and resolution of altimetric products, and the non-passive nature of biogeochemical tracers. Here we compare the ability of standard Eulerian diagnostics and the finite-size Lyapunov exponent in detecting instantaneaous and climatological transport and mixing properties. By comparing with sea-surface temperature patterns, we find that the two diagnostics provide similar results for slowly evolving eddies like the first Alboran gyre. However, the Lyapunov exponent is also able to predict the (sub-)mesoscale filamentary process occuring along the Algerian current and above the Balearic Abyssal Plain. Such filaments are also observed, with some mismatch, in sea-surface temperature patterns. Climatologies of Lyapunov exponents do not show any compact relation with other Eulerian diagnostics, unveiling a different structure even at the basin scale. We conclude that filamentation dynamics can be detected by reprocessing available altimetric data with Lagrangian tools, giving insight into (sub-)mesoscale stirring processes relevant to tracer observations and complementing traditional Eulerian diagnostics

    Global tropospheric chemistry: Chemical fluexes in the global atmosphere

    Get PDF
    In October 1987, NSF, NASA, and NOAA jointly sponsored a workshop at Columbia University to assess the experimental tools and analysis procedures in use and under development to measure and understand gas and particle fluxes across this critical air-surface boundary. Results are presented for that workshop. It is published to summarize the present understanding of the various measurement techniques that are available, identify promising new technological developments for improved measurements, and stimulate thinking about this important measurement challenge
    corecore