74,735 research outputs found

    Graph-based discovery of ontology change patterns

    Get PDF
    Ontologies can support a variety of purposes, ranging from capturing conceptual knowledge to the organisation of digital content and information. However, information systems are always subject to change and ontology change management can pose challenges. We investigate ontology change representation and discovery of change patterns. Ontology changes are formalised as graph-based change logs. We use attributed graphs, which are typed over a generic graph with node and edge attribution.We analyse ontology change logs, represented as graphs, and identify frequent change sequences. Such sequences are applied as a reference in order to discover reusable, often domain-specific and usagedriven change patterns. We describe the pattern discovery algorithms and measure their performance using experimental result

    A layered framework for pattern-based ontology evolution

    Get PDF
    The challenge of ontology-driven modelling of information components is well known in both academia and industry. In this paper, we present a novel approach to deal with customisation and abstraction of ontology-based model evolution. As a result of an empirical study, we identify a layered change operator framework based on the granularity, domain-speciļ¬city and abstraction of changes. The implementation of the operator framework is supported through layered change logs. Layered change logs capture the objective of ontology changes at a higher level of granularity and support a comprehensive understanding of ontology evolution. The layered change logs are formalised using a graph-based approach. We identify the recurrent ontology change patterns from an ontology change log for their reuse. The identiļ¬ed patterns facilitate optimizing and improving the deļ¬nition of domain-speciļ¬c change patterns

    The Requirements for Ontologies in Medical Data Integration: A Case Study

    Full text link
    Evidence-based medicine is critically dependent on three sources of information: a medical knowledge base, the patients medical record and knowledge of available resources, including where appropriate, clinical protocols. Patient data is often scattered in a variety of databases and may, in a distributed model, be held across several disparate repositories. Consequently addressing the needs of an evidence-based medicine community presents issues of biomedical data integration, clinical interpretation and knowledge management. This paper outlines how the Health-e-Child project has approached the challenge of requirements specification for (bio-) medical data integration, from the level of cellular data, through disease to that of patient and population. The approach is illuminated through the requirements elicitation and analysis of Juvenile Idiopathic Arthritis (JIA), one of three diseases being studied in the EC-funded Health-e-Child project.Comment: 6 pages, 1 figure. Presented at the 11th International Database Engineering & Applications Symposium (Ideas2007). Banff, Canada September 200

    Organising the knowledge space for software components

    Get PDF
    Software development has become a distributed, collaborative process based on the assembly of off-the-shelf and purpose-built components. The selection of software components from component repositories and the development of components for these repositories requires an accessible information infrastructure that allows the description and comparison of these components. General knowledge relating to software development is equally important in this context as knowledge concerning the application domain of the software. Both form two pillars on which the structural and behavioural properties of software components can be addressed. Form, effect, and intention are the essential aspects of process-based knowledge representation with behaviour as a primary property. We investigate how this information space for software components can be organised in order to facilitate the required taxonomy, thesaurus, conceptual model, and logical framework functions. Focal point is an axiomatised ontology that, in addition to the usual static view on knowledge, also intrinsically addresses the dynamics, i.e. the behaviour of software. Modal logics are central here ā€“ providing a bridge between classical (static) knowledge representation approaches and behaviour and process description and classification. We relate our discussion to the Web context, looking at Web services as components and the Semantic Web as the knowledge representation framewor

    Knowledge infrastructures for software service architectures

    Get PDF
    Software development has become a distributed, collaborative process based on the assembly of off-the-shelf and purpose-built components or services. The selection of software services from service repositories and their integration into software system architectures, but also the development of services for these repositories requires an accessible information infrastructure that allows the description and comparison of these services. General knowledge relating to software development is equally important in this context as knowledge concerning the application domain of the software. Both form two pillars on which the structural and behavioural properties of software services can be addressed. We investigate how this information space for software services can be organized. Focal point are ontologies that, in addition to the usual static view on knowledge, also intrinsically addresses the dynamics, i.e. the behaviour of software. We relate our discussion to the Web context, looking at the Web Services Framework and the Semantic Web as the knowledge representation framework
    • ā€¦
    corecore