17 research outputs found

    Efficient dam break flood simulation methods for developing a preliminary evacuation plan after the Wenchuan Earthquake

    Get PDF
    The Xiaojiaqiao barrier lake, which was the second largest barrier lake formed by the Wenchuan Earthquake had seriously threatened the lives and property of the population downstream. The lake was finally dredged successfully on 7 June 2008. Because of the limited time available to conduct an inundation potential analysis and make an evacuation plan, barrier lake information extraction and real-time dam break flood simulation should be carried out quickly, integrating remote sensing and geographic information system (GIS) techniques with hydrologic/hydraulic analysis. In this paper, a technical framework and several key techniques for this real-time preliminary evacuation planning are introduced. An object-oriented method was used to extract hydrological information on the barrier lake from unmanned aerial vehicle (UAV) remote sensing images. The real-time flood routine was calculated by using shallow-water equations, which were solved by means of a finite volume scheme on multiblock structured grids. The results of the hydraulic computations are visualized and analyzed in a 3-D geographic information system for inundation potential analysis, and an emergency response plan is made. The results show that if either a full-break or a half-break situation had occurred for the Chapinghe barrier lake on 19 May 2008, then the Xiaoba Town region and the Sangzao Town region would have been affected, but the downstream towns would have been less influenced. Preliminary evacuation plans under different dam break situations can be effectively made using these methods

    Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate

    Get PDF
    Detection of changes in Earth surface features, for example lakes, is important for understanding the relationships between human and natural phenomena in order to manage better the increasingly scarce natural resources. This work presents a procedure of using Modified Normalised Difference Water Index (MNDWI) to detect fluctuations of Lake surface-water area and relate it to a changing climate. The study used radiometrically and geometrically rectified Landsat images for 1986, 1995 and 2010 encompassing the Kyoga Basin lakes of Uganda, in order to investigate the changes in surface-water area between the respective years. The Standard Precipitation Index (SPI) and Drought Severity Index (DSI) are applied to show the relationship between variability of surface-water area and climate parameters. The present analysis reveals that surface-water area fluctuation is linked to rainfall variability. In particular, Lake Kyoga sub-basin lakes experienced an increase in surface-water area in 2010 compared to 1986. This work has important implications to water resources management for Lake Kyoga and could be vital to water resource managers across Ugandan lakes.http://link.springer.com/journal/7042016-09-30hb2016Geography, Geoinformatics and Meteorolog

    Recent technological and methodological advances for the investigation of landslide dams

    Full text link
    River-damming by landslides is a widespread phenomenon around the world. Recent advances in remote sensing technology and the rising commercial availability of their products enable the assemblage of increasingly more complete inventories and improve monitoring efforts. On the ground, multi-method dating campaigns enhance our understanding of the timelines of dam formation and failure. In comparison to single-dating methods, they reduce uncertainty by using different materials from the landslide deposit, facilitate the advantages of each method, and consider the deposit and the source area. They can pin dates on the time of lake drainage where backwater sediments are included in the dating campaign and thus inform about dam longevity. Geophysical methods provide non-invasive and rapid methods to investigate the properties and interior conditions of landslide dams. By identifying, e.g. evolving zones of weakness and saturation they can aid in the monitoring of a dam in addition to providing information on interior stratification for scientific research. To verify results from geophysical campaigns, and to add details of dam interior structures and geotechnical properties, knowledge of their sedimentology is essential. This information is gathered at sections from breached dams, other (partially) eroded landslide deposits, and through laboratory testing of sampled material. Combining the knowledge gained from all these methods with insights from blast-fill and embankment dam construction, physical and numerical modelling in multi-disciplinary research projects is the way forward in landslide dam research, assessment and monitoring. This review offers a broad, yet concise overview of the state-of-the-art in the aforementioned research fields. It completes the review of Fan et al. (2020) on the formation and impact on landslide dams

    Landslide dam hazard modelling in the West Coast Region, New Zealand.

    Get PDF
    Landslide dams are common in mountainous regions with steep narrow valleys and can expose downstream communities and critical infrastructure to large intense outburst floods. Large earthquakes such as the M 7.8 Kaikōura earthquake in New Zealand in 2016 and the M 7.9 Wenchuan earthquake in China in 2008 can form hundreds of landslide dams in a single event. As a result, we have considerable information on the locations where landslide dams occur after a large earthquake, and in particular there is extensive research on where landslide dams formed during the Kaikōura earthquake. However, there is limited research predicting where potential landslide dams may form in future, particularly on a regional scale. In New Zealand, the West Coast Region is prone to large earthquakes due to the presence of the plate boundary that forms the Alpine Fault and has experienced large landslide dams in the past, however there is limited understanding of where landslide dams may form in the future. This study developed a regional model to identify where landslide dams are most likely to form and applied it to the West Coast Region. The model combined valley width with local relief for mapped landslide dams in the Kaikōura Region as a result of the 2016 earthquake to identify the types of locations in which landslide dams occurred. This showed that 98% of landslide dams formed in locations where local relief was equal to or exceeded local valley width. This simple relationship was then applied to the West Coast Region with the addition of upstream area to act as a proxy for the size of any potential lake in order to determine the most high hazard locations on the West Coast Region. Overall, the Haast, Hokitika, and Whataroa catchments were shown to have the most considerable landslide dam hazard, with the Haast catchment being particularly hazardous. Larger catchments with wide floodplains such as the Buller and Grey catchments had lower landslide dam hazard despite their size. Outburst flood modelling was then undertaken at four high hazard sites in the Haast, Hokitika, and Whataroa catchments for nominal dam heights of 10 m and 50 m, to determine the critical infrastructure exposed to outburst floods. This showed that, of the four sites, outburst flooding in the Hokitika catchment could affect the most people and infrastructure in total, however outburst flooding could be more devastating to local communities in the Haast catchment due to a higher relative exposure. Combining the potential for large earthquakes from the Alpine Fault and the vulnerability of the West Coast Region suggests the hazard and risk from landslide dams and potential outburst flooding is high across the entire region. There is therefore an urgent need to understand the local vulnerability and prepare emergency response plans and mitigation actions prior to a major earthquake in the West Coast Region

    Controls on the distribution of landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China

    Get PDF
    Landsliding is the dominant mass wasting process in upland areas where the rate of river incision is higher than that of rock weathering of hillslopes. Although progressive erosional processes can provide sufficient conditions for slope failure, the majority of landslides are induced by earthquakes, rainstorms or a combination of these two. Landslides are also one of the most destructive geological processes, being the primary cause of damage and fatalities associated with severe storms and earthquakes in mountainous regions. On 12th May 2008 the magnitude 7.9 Wenchuan earthquake occurred in the Longmen Shan mountain range, on the northwest margin of the Sichuan Basin. Landsliding contributed greatly to the high death toll of over 70,000 and widespread infrastructural damage produced by the earthquake. The event offers an opportunity to both broaden the global database of seismically induced landslides and study the processes involved in earthquake-triggered landsliding, for a large continental thrust event with complex faulting mechanisms and diverse geophysical conditions. To achieve this, the following investigation builds upon recent advances in landslide remote sensing, to develop automated detection algorithms through which landslides can be accurately mapped using a range of satellite data. Using these techniques, a first order, regional landslide inventory map of slope failures triggered by the Wenchuan earthquake is produced, over an area of 12,000km2 along the main rupture zone. The production of this dataset demonstrates the application of automated classification techniques for the rapid generation of landslide data, for both geomorphological research and hazard management applications. The data is used to examine the interaction of fault rupture dynamics, topography and geology on landslide failure location, and identify key characteristics of the landslide distribution. Findings of the study demonstrate high levels of landslide occurrence along the entire mapped length of the rupture zone, and an exponential decay in landslide density with distance from the co-seismic surface ruptures. This is superimposed over a marked hanging wall effect, along with clear geological and topographic controls on landslide occurrence. Through generalised linear modelling, peak ground acceleration attenuation patterns, hillslope gradient, relief, local elevation and geology are identified as core controls on the location of landslides. The results of this research shed light on some increasingly recognised though poorly understood characteristics of seismically induced landslide distributions. The dataset produced contributes to the limited global database of earthquake-triggered landslide inventories, as well producing a widely applicable resource for further study of the Wenchuan earthquake and post-seismic landscape evolution

    Engineering Geology for Society and Territory: volume 2: landslide processes

    No full text
    This book is one out of 8 IAEG XII Congress volumes, and deals with Landslide processes, including: field data and monitoring techniques, prediction and forecasting of landslide occurrence, regional landslide inventories and dating studies, modeling of slope instabilities and secondary hazards (e.g. impulse waves and landslide-induced tsunamis, landslide dam failures and breaching), hazard and risk assessment, earthquake and rainfall induced landslides, instabilities of volcanic edifices, remedial works and mitigation measures, development of innovative stabilization techniques and applicability to specific engineering geological conditions, use of geophysical techniques for landslide characterization and investigation of triggering mechanisms. Focuses is given to innovative techniques, well documented case studies in different environments, critical components of engineering geological and geotechnical investigations, hydrological and hydrogeological investigations, remote sensing and geophysical techniques, modeling of triggering, collapse, runout and landslide reactivation, geotechnical design and construction procedures in landslide zones, interaction of landslides with structures and infrastructures and possibility of domino effects. The Engineering Geology for Society and Territory volumes of the IAEG XII Congress held in Torino from September 15-19, 2014, analyze the dynamic role of engineering geology in our changing world and build on the four main themes of the congress: environment, processes, issues, and approaches.Postprint (published version

    Characterisation and Analysis of Catastrophic Landslides and Related Processes using Digital Topographic Data

    Get PDF
    This thesis represents a large body of work that seeks to describe, quantify, and simulate the behaviour of large rock slope failures (> 1 Mm³), in the form of landslides and rock avalanches, and their secondary processes, such as landslide-dammed lakes, utilizing remotely sensed data. Remotely sensed data includes aerial photography, high resolution satellite imagery from various platforms (e.g. LANDSAT, ASTER, EO-1, SPOT), and digital topographic elevation models of the Earth’s surface (e.g. SRTM-3, ASTER GDEM2, LiDAR). This thesis focused on regions in northwest North America (British Columbia, Yukon Territory, and Alaska), and on regions in the Himalaya and Pamirs Mountain chains (Tajikistan, Afghanistan, Pakistan, Tibet, and India). These study regions are each highly dynamic landscapes, where the occurrence of rock slope failures per area is higher than non-mountainous regions, and these events are aiding to the shape and profile of the landscapes and surfaces found today. This thesis focuses on: 1) the ability to accurately calculate geometrics (e.g. areas, volumes, runouts, debris depths) for large scale landslides and their associated landslide dammed lakes (e.g. areas, volumes, outbursts), utilizing data from remotely sensed sources; 2) the attempt to successfully simulate the observed dynamics for both landslide emplacement and their resulting debris deposits (DAN-W, DAN3D), and possible outburst flood scenarios (FLO2D); and, 3) attempt to quantify the kinetic and specific energy involved in rock avalanches, and how these energetics relate to fragmentation, as well as the lateral spreading and thinning of debris sheets. The river valleys of the northwest Himalayas (Pakistan and India) and the adjacent Pamirs Mountains of Afghanistan and Tajikistan contain in excess of two hundred known rockslide deposits of unknown age that have interrupted surface drainage and previously dammed major rivers in the region in recent and prehistoric time. Some prehistoric rockslide dams in the northwest Himalayas have impounded massive lakes with volumes in excess of 20 Gm³. The region contains: 1) the highest rockslide dam in the world (the 1911 Usoi rockslide, Tajikistan), which impounds the current largest rockslide-dammed lake (Lake Sarez) on Earth (est. volume 17 Gm³); 2) the largest documented outburst flood (6.5 Gm³) associated with a historical rockslide dam outburst (the 1841 Indus Flood, Pakistan); and, 3) the world’s most recent rockslide-dammed lake emergency, the 2010 Attabad rockslide dam on the Hunza River, in the Upper Indus basin, including the newly created Lake Gojal. By accurately quantifying the volume of an impoundment, and the downstream valley topography (DEM), floodwave scenarios can be created for various breaching situations, allowing for the delineation of downstream inundation areas, or the creation of hazard and risk scenarios. Two methods are used to attempt to quantify the volumes of landslide-dammed lakes: 1) a contour interpolation method, focusing on the creation of contours to represent lake levels in the DEM data; and, 2) a new technique using digitized shorelines and statistical methods to obtain lake elevations on specific dates. A new technique has also been developed to quantify the larger block fragmentation from rock avalanches in the glacial environment, and a credible grain-size curve for the largest blocks can be obtained, aiding in the creation of a more complete grain-size curve for a particular event. The combination of landslides and their associated landslide dammed lakes are an important geomorphic process to study, as these events have a direct relationship to the hazard and risk faced by local communities living and working in these regions. By understanding the emplacement and deposit dynamics of large landslides and/or the outburst flood scenarios from naturally impounded reservoirs, we can attempt to reduce the direct impacts these events have to local communities.4 month

    Advances in Geotechnical Earthquake Engineering

    Get PDF
    This book sheds lights on recent advances in Geotechnical Earthquake Engineering with special emphasis on soil liquefaction, soil-structure interaction, seismic safety of dams and underground monuments, mitigation strategies against landslide and fire whirlwind resulting from earthquakes and vibration of a layered rotating plant and Bryan's effect. The book contains sixteen chapters covering several interesting research topics written by researchers and experts from several countries. The research reported in this book is useful to graduate students and researchers working in the fields of structural and earthquake engineering. The book will also be of considerable help to civil engineers working on construction and repair of engineering structures, such as buildings, roads, dams and monuments
    corecore