696 research outputs found

    Change Detection in Full and Dual Polarization, Single- and Multifrequency SAR Data

    Get PDF

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed

    Shuttle imaging radar-C science plan

    Get PDF
    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit

    Modeling of Subsurface Scattering from Ice Sheets for Pol-InSAR Applications

    Get PDF
    Remote sensing is a fundamental tool to measure the dynamics of ice sheets and provides valuable information for ice sheet projections under a changing climate. There is, however, the potential to further reduce the uncertainties in these projections by developing innovative remote sensing methods. One of these remote sensing techniques, the polarimetric synthetic aperture radar interferometry (Pol-InSAR), is known since decades to have the potential to assess the geophysical properties below the surface of ice sheets, because of the penetration of microwave signals into dry snow, firn, and ice. Despite this, only very few studies have addressed this topic and the development of robust Pol-InSAR applications is at an early stage. Two potential Pol-InSAR applications are identified as the motivation for this thesis. First, the estimation and compensation of the penetration bias in digital elevation models derived with SAR interferometry. This bias can lead to errors of several meters or even tens of meters in surface elevation measurements. Second, the estimation of geophysical properties of the subsurface of glaciers and ice sheets using Pol-InSAR techniques. There is indeed potential to derive information about melt-refreeze processes within the firn, which are related to density and affect the mass balance. Such Pol-InSAR applications can be a valuable information source with the potential for monthly ice sheet wide coverage and high spatial resolution provided by the next generation of SAR satellites. However, the required models to link the Pol-InSAR measurements to the subsurface properties are not yet established. The aim of this thesis is to improve the modeling of the vertical backscattering distribution in the subsurface of ice sheets and its effect on polarimetric interferometric SAR measurements at different frequencies. In order to achieve this, polarimetric interferometric multi-baseline SAR data at different frequencies and from two different test sites on the Greenland ice sheet are investigated. This thesis contributes with three concepts to a better understanding and to a more accurate modeling of the vertical backscattering distribution in the subsurface of ice sheets. First, the integration of scattering from distinct subsurface layers. These are formed by refrozen melt water in the upper percolation zone and cause an interesting coherence undulation pattern, which cannot be explained with previously existing models. This represents a first link between Pol-InSAR data and geophysical subsurface properties. The second step is the improved modeling of the general vertical backscattering distribution of the subsurface volume. The advantages of more flexible volume models are demonstrated, but interestingly, the simple modification of a previously existing model with a vertical shift parameter lead to the best agreement between model and data. The third contribution is the model based compensation of the penetration bias, which is experimentally validated. At the investigated test sites, it becomes evident that the model based estimates of the surface elevations are more accurate than the interferometric phase center locations, which are conventionally used to derive surface elevations of ice sheets. This thesis therefore improves the state of the art of subsurface scattering modeling for Pol-InSAR applications, demonstrates the model-based penetration bias compensation, and makes a further research step towards the retrieval of geophysical subsurface information with Pol-InSAR

    Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands

    Get PDF
    The aim of this study is to evaluate the potential of multifrequency and Full-polarimetric Synthetic Aperture Radar (SAR) data for retrieving both Above Ground Biomass (AGB) and Leaf Area Index (LAI) in the Amazon floodplain forest environment. Two specific questions were proposed: (a) Does multifrequency SAR data perform more efficiently than single-frequency data in estimating LAI and AGB of várzea forests?; and (b) Are quad-pol SAR data more efficient than single- and dual-pol SAR data in estimating LAI and AGB of várzea forest? To answer these questions, data from different sources (TerraSAR-X Multi Look Ground Range Detected (MGD), Radarsat-2 Standard Qual-Pol, advanced land observing satellite (ALOS)/ phased-arrayed L-band SAR (PALSAR-1). Fine-beam dual (FDB) and quad Polarimetric mode) were combined in 10 different scenarios to model both LAI and AGB. A R-platform routine was implemented to automatize the selection of the best regression models. Results indicated that ALOS/PALSAR variables provided the best estimates for both LAI and AGB. Single-frequency L-band data was more efficient than multifrequency SAR. PALSAR-FDB HV-dB provided the best LAI estimates during low-water season. The best AGB estimates at high-water season were obtained by PALSAR-1 quad-polarimetric data. The top three features for estimating AGB were proportion of volumetric scattering and both the first and second dominant phase difference between trihedral and dihedral scattering, extracted from Van Zyl and Touzi decomposition, respectively. The models selected for both AGB and LAI were parsimonious. The Root Mean Squared Error (RMSEcv), relative overall RMSEcv (%) and R2 value for LAI were 0.61%, 0.55% and 13%, respectively, and for AGB, they were 74.6 t·ha−1, 0.88% and 46%, respectively. These results indicate that L-band (ALOS/PALSAR-1) has a high potential to provide quantitative and spatial information about structural forest attributes in floodplain forest environments. This potential may be extended not only with PALSAR-2 data but also to forthcoming missions (e.g., NISAR, Global Ecosystems Dynamics Investigation Lidar (GEDI), BIOMASS, Tandem-L) for promoting wall-to-wall AGB mapping with a high level of accuracy in dense tropical forest regions worldwide

    Multi-frequency PolSAR Image Fusion Classification Based on Semantic Interactive Information and Topological Structure

    Full text link
    Compared with the rapid development of single-frequency multi-polarization SAR image classification technology, there is less research on the land cover classification of multifrequency polarimetric SAR (MF-PolSAR) images. In addition, the current deep learning methods for MF-PolSAR classification are mainly based on convolutional neural networks (CNNs), only local spatiality is considered but the nonlocal relationship is ignored. Therefore, based on semantic interaction and nonlocal topological structure, this paper proposes the MF semantics and topology fusion network (MF-STFnet) to improve MF-PolSAR classification performance. In MF-STFnet, two kinds of classification are implemented for each band, semantic information-based (SIC) and topological property-based (TPC). They work collaboratively during MF-STFnet training, which can not only fully leverage the complementarity of bands, but also combine local and nonlocal spatial information to improve the discrimination between different categories. For SIC, the designed crossband interactive feature extraction module (CIFEM) is embedded to explicitly model the deep semantic correlation among bands, thereby leveraging the complementarity of bands to make ground objects more separable. For TPC, the graph sample and aggregate network (GraphSAGE) is employed to dynamically capture the representation of nonlocal topological relations between land cover categories. In this way, the robustness of classification can be further improved by combining nonlocal spatial information. Finally, an adaptive weighting fusion (AWF) strategy is proposed to merge inference from different bands, so as to make the MF joint classification decisions of SIC and TPC. The comparative experiments show that MF-STFnet can achieve more competitive classification performance than some state-of-the-art methods

    Proceedings of the Third Spaceborne Imaging Radar Symposium

    Get PDF
    This publication contains summaries of the papers presented at the Third Spaceborne Imaging Radar Symposium held at the Jet Propulsion Laboratory (JPL), California Institute of Technology, in Pasadena, California, on 18-21 Jan. 1993. The purpose of the symposium was to present an overview of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans. This symposium is the third in a series of 'Spaceborne Imaging Radar' symposia held at JPL. The first symposium was held in Jan. 1983 and the second in 1986
    corecore