129 research outputs found

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Gravitational waves: understanding black holes

    Get PDF
    This thesis concerns the use of observations of gravitational waves as tools for astronomy and fundamental physics. Gravitational waves are small ripples in spacetime produced by rapidly accelerating masses; their existence has been predicted for almost 100 years, but the first direct evidence of their existence came only very recently with the announcement in February 2016 of the detection by the LIGO and VIRGO collaborations. Part I of this thesis presents an introduction to gravitational wave astronomy, including a detailed discussion of a wide range of gravitational wave sources, their signal morphologies, and the experimental detectors used to observe them. Part II of this thesis concerns a particular data analysis problem which often arises when trying to infer the source properties from a gravitational wave observation. The use of an inaccurate signal model can cause significant systematic errors in the inferred source parameters. The work in this section concerns a proposed technique, called the Gaussian process marginalised likelihood, for overcoming this problem. Part III of this thesis concerns the possibility of testing if the gravitational field around an astrophysical black hole conforms to the predictions of general relativity and the cosmic censorship hypothesis. It is expected that the gravitational field should be well described by the famous Kerr solution. Two approaches for testing this hypothesis are considered; one using X-ray observations and one using gravitational waves. The results from these two approaches are compared and contrasted. Finally, the conclusions and a discussion of future prospects are presented in part IV of this thesis

    Asteroid lightcurves from the Palomar Transient Factory survey: Rotation periods and phase functions from sparse photometry

    Get PDF
    We fit 54,296 sparsely-sampled asteroid lightcurves in the Palomar Transient Factory to a combined rotation plus phase-function model. Each lightcurve consists of 20+ observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude and other attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining 53,000 fitted periods. By this method we find 9,033 of our lightcurves (of 8,300 unique asteroids) have reliable periods. Subsequent consideration of asteroids with multiple lightcurve fits indicate 4% contamination in these reliable periods. For 3,902 lightcurves with sufficient phase-angle coverage and either a reliably-fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than 2 g/cm3^3, while C types have a lower limit of between 1 and 2 g/cm3^3, in agreement with previous density estimates. For 5-20km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types' differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes and apparent-magnitude residuals to those of the Minor Planet Center's nominal G=0.15G=0.15, rotation-neglecting model; our phase-function plus Fourier-series fitting reduces asteroid photometric RMS scatter by a factor of 3.Comment: 35 pages, 29 figures. Accepted 15-Apr-2015 to The Astronomical Journal (AJ). Supplementary material including ASCII data tables will be available through the publishing journal's websit

    Present and Future of Gravitational Wave Astronomy

    Get PDF
    The first detection on Earth of a gravitational wave signal from the coalescence of a binary black hole system in 2015 established a new era in astronomy, allowing the scientific community to observe the Universe with a new form of radiation for the first time. More than five years later, many more gravitational wave signals have been detected, including the first binary neutron star coalescence in coincidence with a gamma ray burst and a kilonova observation. The field of gravitational wave astronomy is rapidly evolving, making it difficult to keep up with the pace of new detector designs, discoveries, and astrophysical results. This Special Issue is, therefore, intended as a review of the current status and future directions of the field from the perspective of detector technology, data analysis, and the astrophysical implications of these discoveries. Rather than presenting new results, the articles collected in this issue will serve as a reference and an introduction to the field. This Special Issue will include reviews of the basic properties of gravitational wave signals; the detectors that are currently operating and the main sources of noise that limit their sensitivity; planned upgrades of the detectors in the short and long term; spaceborne detectors; a data analysis of the gravitational wave detector output focusing on the main classes of detected and expected signals; and implications of the current and future discoveries on our understanding of astrophysics and cosmology
    • …
    corecore