12,305 research outputs found

    Chance-constrained Scheduling via Conflict-directed Risk Allocation

    Get PDF
    Temporal uncertainty in large-scale logistics forces one to trade off between lost efficiency through built-in slack and costly replanning when deadlines are missed. Due to the difficulty of reasoning about such likelihoods and consequences, a computational framework is needed to quantify and bound the risk of violating scheduling requirements. This work addresses the chance-constrained scheduling problem, where actions’ durations are modeled probabilistically. Our solution method uses conflict-directed risk allocation to efficiently compute a scheduling policy. The key insight, compared to previous work in probabilistic scheduling, is to decouple the reasoning about temporal and risk constraints. This decomposes the problem into a separate master and subproblem, which can be iteratively solved much quicker. Through a set of simulated car-sharing scenarios, it is empirically shown that conflict-directed risk allocation computes solutions nearly an order of magnitude faster than prior art does, which considers all constraints in a single lump-sum optimization

    Optimising Flexibility of Temporal Problems with Uncertainty

    Get PDF
    Temporal networks have been applied in many autonomous systems. In real situations, we cannot ignore the uncertain factors when using those autonomous systems. Achieving robust schedules and temporal plans by optimising flexibility to tackle the uncertainty is the motivation of the thesis. This thesis focuses on the optimisation problems of temporal networks with uncertainty and controllable options in the field of Artificial Intelligence Planning and Scheduling. The goal of this thesis is to construct flexibility and robustness metrics for temporal networks under the constraints of different levels of controllability. Furthermore, optimising flexibility for temporal plans and schedules to achieve robust solutions with flexible executions. When solving temporal problems with uncertainty, postponing decisions according to the observations of uncertain events enables flexible strategies as the solutions instead of fixed schedules or plans. Among the three levels of controllability of the Simple Temporal Problem with Uncertainty (STPU), a problem is dynamically controllable if there is a successful dynamic strategy such that every decision in it is made according to the observations of past events. In the thesis, we make the following contributions. (1) We introduce an optimisation model for STPU based on the existing dynamic controllability checking algorithms. Some flexibility and robustness measures are introduced based on the model. (2) We extend the definition and verification algorithm of dynamic controllability to temporal problems with controllable discrete variables and uncertainty, which is called Controllable Conditional Temporal Problems with Uncertainty (CCTPU). An entirely dynamically controllable strategy of CCTPU consists of both temporal scheduling and variable assignments being dynamically decided, which maximize the flexibility of the execution. (3) We introduce optimisation models of CCTPU under fully dynamic controllability. The optimisation models aim to answer the questions how flexible, robust or controllable a schedule or temporal plan is. The experiments show that making decisions dynamically can achieve better objective values than doing statically. The thesis also contributes to the field of AI planning and scheduling by introducing robustness metrics of temporal networks, proposing an envelope-based algorithm that can check dynamic controllability of temporal networks with uncertainty and controllable discrete decisions, evaluating improvements from making decisions strongly controllable to temporally dynamically controllable and fully dynamically controllable and comparing the runtime of different implementations to present the scalability of dynamically controllable strategies

    Resolving Over-Constrained Temporal Problems with Uncertainty through Conflict-Directed Relaxation

    Get PDF
    Over-subscription, that is, being assigned too many things to do, is commonly encountered in temporal scheduling problems. As human beings, we often want to do more than we can actually do, and underestimate how long it takes to perform each task. Decision makers can benefit from aids that identify when these failure situations are likely, the root causes of these failures, and resolutions to these failures. In this paper, we present a decision assistant that helps users resolve over-subscribed temporal problems. The system works like an experienced advisor that can quickly identify the cause of failure underlying temporal problems and compute resolutions. The core of the decision assistant is the Best-first Conflict-Directed Relaxation (BCDR) algorithm, which can detect conflicting sets of constraints within temporal problems, and computes continuous relaxations for them that weaken constraints to the minimum extent, instead of removing them completely. BCDR is an extension to the Conflict-Directed A* algorithm, first developed in the model-based reasoning community to compute most likely system diagnoses or reconfigurations. It generalizes the discrete conflicts and relaxations, to hybrid conflicts and relaxations, which denote minimal inconsistencies and minimal relaxations to both discrete and continuous relaxable constraints. In addition, BCDR is capable of handling temporal uncertainty, expressed as either set-bounded or probabilistic durations, and can compute preferred trade-offs between the risk of violating a schedule requirement, versus the loss of utility by weakening those requirements. BCDR has been applied to several decision support applications in different domains, including deep-sea exploration, urban travel planning and transit system management. It has demonstrated its effectiveness in helping users resolve over-subscribed scheduling problems and evaluate the robustness of existing solutions. In our benchmark experiments, BCDR has also demonstrated its efficiency on solving large-scale scheduling problems in the aforementioned domains. Thanks to its conflict-driven approach for computing relaxations, BCDR achieves one to two orders of magnitude improvements on runtime performance when compared to state-of-the-art numerical solvers.We would like to acknowledge financial support from the Boeing Company under grant MIT-BA-GTA-1; the Defense Advanced Research Projects Agency under contract number HR0011-15-C-0098; the Defense Advanced Research Projects Agency meta program under contract number 6923548; and the Australian Research Council Discovery Project Grant DP140104219

    A risk-aware architecture for resilient spacecraft operations

    Get PDF
    In this paper we discuss a resilient, risk-aware software architecture for onboard, real-time autonomous operations that is intended to robustly handle uncertainty in space-craft behavior within hazardous and unconstrained environments, without unnecessarily increasing complexity. This architecture, the Resilient Spacecraft Executive (RSE), serves three main functions: (1) adapting to component failures to allow graceful degradation, (2) accommodating environments, science observations, and spacecraft capabilities that are not fully known in advance, and (3) making risk-aware decisions without waiting for slow ground-based reactions. This RSE is made up of four main parts: deliberative, habitual, and reflexive layers, and a state estimator that interfaces with all three. We use a risk-aware goal-directed executive within the deliberative layer to perform risk-informed planning, to satisfy the mission goals (specified by mission control) within the specified priorities and constraints. Other state-of-the-art algorithms to be integrated into the RSE include correct-by-construction control synthesis and model-based estimation and diagnosis. We demonstrate the feasibility of the architecture in a simple implementation of the RSE for a simulated Mars rover scenario

    Collaborative Diagnosis of Over-Subscribed Temporal Plans

    Get PDF
    PhD thesisOver-subscription, that is, being assigned too many tasks or requirements that are too demanding, is commonly encountered in temporal planning problems. As human beings, we often want to do more than we can, ask for things that may not be available, while underestimating how long it takes to perform each task. It is often difficult for us to detect the causes of failure in such situations and then find resolutions that are effective. We can greatly benefit from tools that assist us by looking out for these plan failures, by identifying their root causes, and by proposing preferred resolutions to these failures that lead to feasible plans. In recent literature, several approaches have been developed to resolve such over-subscribed problems, which are often framed as over-constrained scheduling, configuration design or optimal planning problems. Most of them take an all-or-nothing approach, in which over-subscription is resolved through suspending constraints or dropping goals. While helpful, in real-world scenarios, we often want to preserve our plan goals as much possible. As human beings, we know that slightly weakening the requirements of a travel plan, or replacing one of its destinations with an alternative one is often sufficient to resolve an over-subscription problem, no matter if the requirement being weakened is the duration of a deep-sea survey being planned for, or the restaurant cuisine for a dinner date. The goal of this thesis is to develop domain independent relaxation algorithms that perform this type of slight weakening of constraints, which we will formalize as continuous relaxation, and to embody them in a computational aid, Uhura, that performs tasks akin to an experienced travel agent or ocean scientists. In over-subscribed situations, Uhura helps us diagnose the causes of failure, suggests alternative plans, and collaborates with us in order to resolve conflicting requirements in the most preferred way. Most importantly, the algorithms underlying Uhura supports the weakening, instead of suspending, of constraints and variable domains in a temporally flexible plan. The contribution of this thesis is two-fold. First, we developed an algorithmic framework, called Best-first Conflict-Directed Relaxation (BCDR), for performing plan relaxation. Second, we use the BCDR framework to perform relaxation for several different families of plan representations involving different types of constraints. These include temporal constraints, chance constraints and variable domain constraints, and we incorporate several specialized conflict detection and resolution algorithms in support of the continuous weakening of them. The key idea behind BCDR's approach to continuous relaxation is to generalize the concepts of discrete conflicts and relaxations, first introduced by the model-based diagnosis community, to hybrid conflicts and relaxations, which denote minimal inconsistencies and minimal relaxations to both discrete and continuous relaxable constraints

    Using Distributed Agents to Create University Course Timetables Addressing Essential & Desirable Constraints and Fair Allocation of Resources

    Get PDF
    In this study, the University Course Timetabling Problem (UCTP) has been investigated. This is a form of Constraint Satisfaction Problem (CSP) and belongs to the NP-complete class. The nature of a such problem is highly descriptive, a solution therefore involves combining many aspects of the problem. Although various timetabling algorithms have been continuously developed for nearly half a century, a gap still exists between the theoretical and practical aspects of university timetabling. This research is aimed to narrow the gap. We created an agent-based model for solving the university course timetabling problem, where this model not only considers a set of essential constraints upon the teaching activities, but also a set of desirable constraints that correspond to real-world needs. The model also seeks to provide fair allocation of resources. The capabilities of agents are harnessed for the activities of decision making, collaboration, coordination and negotiation by embedding them within the protocol designs. The resulting set of university course timetables involve the participation of every element in the system, with each agent taking responsibility for organising of its own course timetable, cooperating together to resolve problems. There are two types of agents in the model; these are Year-Programme Agent and Rooms Agent. In this study, we have used four different principles for organising the interaction between the agents: First-In-First-Out & Sequential (FIFOSeq), First-In-First-Out & Interleaved (FIFOInt), Round-Robin & Sequential (RRSeq) and Round-Robin & Interleaved (RRInt). The problem formulation and data instances of the third track of the Second International Timetabling Competition (ITC-2007) have been used as benchmarks for validating these implemented timetables. The validated results not only compare the four principles with each other; but also compare them with other timetabling techniques used for ITC-2007. The four different principles were able to successfully schedule all lectures in different periods, with no instances of two lectures occupying the same room at the same time. The lectures belonging to the same curriculum or taught by the same teacher do not conflict. Every lecture has been assigned a teacher before scheduling. The capacity of every assigned room is greater than, or equal to, the number of students in that course. The lectures of each course have been spread across the minimum number of working days with more than 98 percent success, and for more than 75 percent of the lectures under the same curriculum, it has been possible to avoid isolated deliveries. We conclude that the RRInt principle gives the most consistent likelihood of ensuring that each YPA in the system gets the best and fairest chance to obtain its resources

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Risk allocation for temporal risk assessment

    Get PDF
    Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 63-64).Temporal uncertainty arises when performing any activity in the natural world. When activities are composed into temporal plans, then, there is a risk of not meeting the plan requirements. Currently, we do not have quantitatively precise methods for assessing temporal risk of a plan. Existing methods that deal with temporal uncertainty either forgo probabilistic models or try to optimize a single objective, rather than satisfy multiple objectives. This thesis offers a method for evaluating whether a schedule exists that meets a set of temporal constraints, with acceptable risk of failure. Our key insight is to assume a form of risk allocation to each source of temporal uncertainty in our plan, such that we may reformulate the probabilistic plan into an STNU parameterized on the risk allocation. We show that the problem becomes a deterministic one of finding a risk allocation which implies a schedulable STNU within acceptable risk. By leveraging the principles behind STNU analysis, we derive conditions which encode this problem as a convex feasibility program over risk allocations. Furthermore, these conditions may be learned incrementally as temporal conflicts. Thus, to boost computational efficiency, we employ a generate-and-test approach to determine whether a schedule may be found.by Andrew J. Wang.M. Eng

    Project portfolio resource risk assessment considering project interdependency by the fuzzy Bayesian network

    Get PDF
    Resource risk caused by specific resource sharing or competition among projects due to resource constraints is a major issue in project portfolio management, which challenges the application of risk analysis methods effectively. This paper presents a methodology by using a fuzzy Bayesian network to assess the project portfolio resource risk, determine critical resource risk factors, and propose risk-reduction strategies. In this method, the project portfolio resource risk factors are first identified by taking project interdependency into consideration, and then the Bayesian network model is developed to analyze the risk level of the identified risk factors in which expert judgments and fuzzy set theory are integrated to determine the probabilities of all risk factors to deal with incomplete risk data and information. To reduce the subjectivity of expert judgments, the expert weights are determined by combining experts’ background and reliability degree of expert judgments. A numerical analysis is used to demonstrate the application of the proposed methodology. The results show that project portfolio resource risks can be analyzed effectively and efficiently. Furthermore, “poor communication and cooperation among projects,” “capital difficulty,” and “lack of sharing technology among projects” are considered the leading factors of the project portfolio resource risk. Risk-reduction strategic decisions based on the results of risk assessment can be made, which provide project managers with a useful method or tool to manage project risks
    • 

    corecore