2,101 research outputs found

    Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future

    Full text link
    Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.Comment: 77 pages, 5 figures, 5 table

    POTs: Protective Optimization Technologies

    Full text link
    Algorithmic fairness aims to address the economic, moral, social, and political impact that digital systems have on populations through solutions that can be applied by service providers. Fairness frameworks do so, in part, by mapping these problems to a narrow definition and assuming the service providers can be trusted to deploy countermeasures. Not surprisingly, these decisions limit fairness frameworks' ability to capture a variety of harms caused by systems. We characterize fairness limitations using concepts from requirements engineering and from social sciences. We show that the focus on algorithms' inputs and outputs misses harms that arise from systems interacting with the world; that the focus on bias and discrimination omits broader harms on populations and their environments; and that relying on service providers excludes scenarios where they are not cooperative or intentionally adversarial. We propose Protective Optimization Technologies (POTs). POTs provide means for affected parties to address the negative impacts of systems in the environment, expanding avenues for political contestation. POTs intervene from outside the system, do not require service providers to cooperate, and can serve to correct, shift, or expose harms that systems impose on populations and their environments. We illustrate the potential and limitations of POTs in two case studies: countering road congestion caused by traffic-beating applications, and recalibrating credit scoring for loan applicants.Comment: Appears in Conference on Fairness, Accountability, and Transparency (FAT* 2020). Bogdan Kulynych and Rebekah Overdorf contributed equally to this work. Version v1/v2 by Seda G\"urses, Rebekah Overdorf, and Ero Balsa was presented at HotPETS 2018 and at PiMLAI 201

    A stochastic multi-criteria assessment of security of transportation assets

    Get PDF
    Transportation project evaluation and prioritization use traditional performance measures including travel time, safety, user costs, economic efficiency, and environmental quality. The project impacts in terms of enhancing the infrastructure resilience or mitigating the consequences of infrastructure damage in the event of disaster occurrence are rarely considered in project evaluation. This dissertation presents a methodology to address this issue so that in evaluating and prioritizing investments, infrastructure with low security can receive the attention they deserve. Secondly, the methodology can be used for evaluating and prioritizing candidate investments dedicated specifically to security enhancement. In defining security as a function of threat likelihood, asset resilience and damage consequences, this dissertation uses security-related considerations in investment prioritization thus adding further robustness in traditional evaluations. As this leads to an increase in the number of performance criteria in the evaluation, the dissertation adopts a multiple-criteria analysis approach. The methodology quantifies the overall security level for an infrastructure in terms of the threats it faces, its resilience to damage, and the consequences in the event of the infrastructure damage. The dissertation demonstrates that it is feasible to develop a security-related measure that can be used as a performance criterion in the evaluation of general transportation projects or projects dedicated specifically towards security improvement. Through a case study, the dissertation applies the methodology by measuring the risk (and hence, security) of each for bridge infrastructure in Indiana. The method was also fuzzified and a Monte Carlo simulation was run to account for unknown data and uncertainty. On the basis of the multiple types of impacts including risk impacts such as the increase in security due to each candidate investment, this dissertation shows how to prioritize security investments across the multiple infrastructure assets using multiple-criteria analysis

    Cost-effective farm-level nitrogen abatement in the presence of environmental and economic risk

    Get PDF
    Abstract This paper evaluates the consequences of considering environmental and economic risk in the analysis of cost-effective nitrogen abatement options in crop production. A farmlevel mathematical programming model incorporating nitrogen leaching variability, field time variability, yield variability, and output price variability is developed. The empirical results reveal that requiring a high reliability with respect to a desired abatement target can be extremely costly, due to the high variability of nitrogen emissions. It appears to be sufficient to reduce average nitrogen load in order to reduce the environmental risk associated with nitrogen leaching variability, since a change to crops with lower average load also results in lower variability of nitrogen emissions. A farmer's degree of risk aversion has some effect on the economically optimal choice of crop mix. However, it is more important to consider the utilisation of machinery and labour resources and crop rotation effects, than considering risk aversion

    Data-driven cyber attack detection and mitigation for decentralized wide-area protection and control in smart grids

    Get PDF
    Modern power systems have already evolved into complicated cyber physical systems (CPS), often referred to as smart grids, due to the continuous expansion of the electrical infrastructure, the augmentation of the number of heterogeneous system components and players, and the consequential application of a diversity of information and telecommunication technologies to facilitate the Wide Area Monitoring, Protection and Control (WAMPAC) of the day-to-day power system operation. Because of the reliance on cyber technologies, WAMPAC, among other critical functions, is prone to various malicious cyber attacks. Successful cyber attacks, especially those sabotage the operation of Bulk Electric System (BES), can cause great financial losses and social panics. Application of conventional IT security solutions is indispensable, but it often turns out to be insufficient to mitigate sophisticated attacks that deploy zero-day vulnerabilities or social engineering tactics. To further improve the resilience of the operation of smart grids when facing cyber attacks, it is desirable to make the WAMPAC functions per se capable of detecting various anomalies automatically, carrying out adaptive activity adjustments in time and thus staying unimpaired even under attack. Most of the existing research efforts attempt to achieve this by adding novel functional modules, such as model-based anomaly detectors, to the legacy centralized WAMPAC functions. In contrast, this dissertation investigates the application of data-driven algorithms in cyber attack detection and mitigation within a decentralized architecture aiming at improving the situational awareness and self-adaptiveness of WAMPAC. First part of the research focuses on the decentralization of System Integrity Protection Scheme (SIPS) with Multi-Agent System (MAS), within which the data-driven anomaly detection and optimal adaptive load shedding are further explored. An algorithm named as Support Vector Machine embedded Layered Decision Tree (SVMLDT) is proposed for the anomaly detection, which provides satisfactory detection accuracy as well as decision-making interpretability. The adaptive load shedding is carried out by every agent individually with dynamic programming. The load shedding relies on the load profile propagation among peer agents and the attack adaptiveness is accomplished by maintaining the historical mean of load shedding proportion. Load shedding only takes place after the consensus pertaining to the anomaly detection is achieved among all interconnected agents and it serves the purpose of mitigating certain cyber attacks. The attack resilience of the decentralized SIPS is evaluated using IEEE 39 bus model. It is shown that, unlike the traditional centralized SIPS, the proposed solution is able to carry out the remedial actions under most Denial of Service (DoS) attacks. The second part investigates the clustering based anomalous behavior detection and peer-assisted mitigation for power system generation control. To reduce the dimensionality of the data, three metrics are designed to interpret the behavior conformity of generator within the same balancing area. Semi-supervised K-means clustering and a density sensitive clustering algorithm based on Hieararchical DBSCAN (HDBSCAN) are both applied in clustering in the 3D feature space. Aiming to mitigate the cyber attacks targeting the generation control commands, a peer-assisted strategy is proposed. When the control commands from control center is detected as anomalous, i.e. either missing or the payload of which have been manipulated, the generating unit utilizes the peer data to infer and estimate a new generation adjustment value as replacement. Linear regression is utilized to obtain the relation of control values received by different generating units, Moving Target Defense (MTD) is adopted during the peer selection and 1-dimensional clustering is performed with the inferred control values, which are followed by the final control value estimation. The mitigation strategy proposed requires that generating units can communicate with each other in a peer-to-peer manner. Evaluation results suggest the efficacy of the proposed solution in counteracting data availability and data integrity attacks targeting the generation controls. However, the strategy stays effective only if less than half of the generating units are compromised and it is not able to mitigate cyber attacks targeting the measurements involved in the generation control

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    An integrated approach to the selection process of independent research and development projects

    Get PDF
    An active independent research and development (IR&D) program is a contributing factor to the U.S. military's reputation for technologically superior weapon systems and combat support equipment. This thesis examines the current selection process of IR&D projects at Naval Research, Development, Test & Evaluations (RDT&E)Centers and develops a recommendation to tailor the selection process to the characteristics of the project under consideration. The U.S. Navy divides its IR&D projects into two categories, independent research (IR) and independent exploratory development (IED). This thesis recommends that a scoring method be used to select IR projects and an economic method be used to select IED projects. The thesis concludes by discussing future issues that will impact the IR&D programs.http://archive.org/details/integratedapproa00larsLieutenant, United States NavyApproved for public release; distribution is unlimited

    The effect of latest shipping alliance on shipping industry

    Get PDF
    • …
    corecore