385 research outputs found

    Spectrum- and Energy-Efficient Radio Resource Allocation for Wireless Communications

    Get PDF
    Wireless communications has been evolved significantly over the last decade. During this period, higher quality of service (QoS) requirements have been proposed to support various services. In addition, due to the increasing number of wireless devices and transmission, the energy consumption of the wireless networks becomes a burden. Therefore, the energy efficiency is considered as important as spectrum efficiency for future wireless communications networks, and spectrum and energy efficiency have become essential research topics in wireless communications. Moreover, due to the exploding of number mobile devices, the limited radio resources have become more and more scarce. With large numbers of users and various QoS requirements, a lot of wireless communications networks and techniques have emerged and how to effectively manage the limited radio resources become much more important. In this dissertation, we focus our research on spectrum- and energy-efficient resource allocation schemes in wireless communication networks. Recently, heterogeneous networks (HetNets) have been proposed and studied to improve the spectrum efficiency. In a two-tier heterogeneous network, small base stations reuse the same spectrum with macro base stations in order to support more transmission over the limited frequency bands. We design a cascaded precoding scheme considering both interference cancellation and power allocation for the two-tier heterogeneous network. Besides heterogeneous networks, as the fast development of intelligent transportation, we study the spectrum- and energy-efficient resource allocation in vehicular communication networks. The intelligent transportation and vehicular communications both have drawn much attention and are faced special wireless environment, which includes Doppler effects and severe uncertainties in channel estimation. A novel designed spectrum efficiency scheme is studied and verified. With consideration of energy efficiency, the device-to-device (D2D) enabled wireless network is an effective network structure to increase the usage of spectrum. From a device\u27s perspective, we design an energy-efficient resource allocation scheme in D2D communication networks. To improve the energy efficiency of wireless communication networks, energy harvesting technique is a powerful way. Recently, the simultaneous wireless information and power transfer (SWIPT) has been proposed as a promising energy harvesting method for wireless communication networks, based on which we derive an energy-efficient resource allocation scheme for SWIPT cooperative networks, which considers both the power and relay allocation. In addition to the schemes derivation for spectrum- and energy-efficient resource allocation, simulation results and the proofs of the proposed propositions are provided for the completeness of this dissertation

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Energy-Efficient Resource Allocation for Device-to-Device Underlay Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks is expected to bring significant benefits for utilizing resources, improving user throughput and extending battery life of user equipments. However, the allocation of radio and power resources to D2D communication needs elaborate coordination, as D2D communication can cause interference to cellular communication. In this paper, we study joint channel and power allocation to improve the energy efficiency of user equipments. To solve the problem efficiently, we introduce an iterative combinatorial auction algorithm, where the D2D users are considered as bidders that compete for channel resources, and the cellular network is treated as the auctioneer. We also analyze important properties of D2D underlay communication, and present numerical simulations to verify the proposed algorithm.Comment: IEEE Transactions on Wireless Communication
    • …
    corecore