9,190 research outputs found

    Traveller Behaviour: Decision making in an unpredictable world

    Get PDF
    This paper discusses the nature and consequences of uncertainty in transport systems. Drawing on work from a number of fields, it addresses travellers’ abilities to predict variable phenomena, their perception of uncertainty, their attitude to risk and the various strategies they might adopt in response to uncertainty. It is argued that despite the increased interest in the representation of uncertainty in transport systems, most models treat uncertainty as a purely statistical issue and ignore the psychological aspects of response to uncertainty. The principle theories and models currently used to predict travellers’ response to uncertainty are presented and number of alternative modelling approaches are outlined. It is argued that the current generation of predictive models do not provide an adequate basis for forecasting response to changes in the degree of uncertainty or for predicting the likely effect of providing additional information. A number of alternative modelling approaches are identified to deal with travellers’ acquisition of information, the definition of their choice set and their choice between the available options. The use of heuristic approaches is recommended as an alternative to more conventional probabilistic methods

    More Than a Feeling: Learning to Grasp and Regrasp using Vision and Touch

    Full text link
    For humans, the process of grasping an object relies heavily on rich tactile feedback. Most recent robotic grasping work, however, has been based only on visual input, and thus cannot easily benefit from feedback after initiating contact. In this paper, we investigate how a robot can learn to use tactile information to iteratively and efficiently adjust its grasp. To this end, we propose an end-to-end action-conditional model that learns regrasping policies from raw visuo-tactile data. This model -- a deep, multimodal convolutional network -- predicts the outcome of a candidate grasp adjustment, and then executes a grasp by iteratively selecting the most promising actions. Our approach requires neither calibration of the tactile sensors, nor any analytical modeling of contact forces, thus reducing the engineering effort required to obtain efficient grasping policies. We train our model with data from about 6,450 grasping trials on a two-finger gripper equipped with GelSight high-resolution tactile sensors on each finger. Across extensive experiments, our approach outperforms a variety of baselines at (i) estimating grasp adjustment outcomes, (ii) selecting efficient grasp adjustments for quick grasping, and (iii) reducing the amount of force applied at the fingers, while maintaining competitive performance. Finally, we study the choices made by our model and show that it has successfully acquired useful and interpretable grasping behaviors.Comment: 8 pages. Published on IEEE Robotics and Automation Letters (RAL). Website: https://sites.google.com/view/more-than-a-feelin

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    A Survey of Contextual Optimization Methods for Decision Making under Uncertainty

    Full text link
    Recently there has been a surge of interest in operations research (OR) and the machine learning (ML) community in combining prediction algorithms and optimization techniques to solve decision-making problems in the face of uncertainty. This gave rise to the field of contextual optimization, under which data-driven procedures are developed to prescribe actions to the decision-maker that make the best use of the most recently updated information. A large variety of models and methods have been presented in both OR and ML literature under a variety of names, including data-driven optimization, prescriptive optimization, predictive stochastic programming, policy optimization, (smart) predict/estimate-then-optimize, decision-focused learning, (task-based) end-to-end learning/forecasting/optimization, etc. Focusing on single and two-stage stochastic programming problems, this review article identifies three main frameworks for learning policies from data and discusses their strengths and limitations. We present the existing models and methods under a uniform notation and terminology and classify them according to the three main frameworks identified. Our objective with this survey is to both strengthen the general understanding of this active field of research and stimulate further theoretical and algorithmic advancements in integrating ML and stochastic programming

    Bayesian Saltwater Intrusion Prediction and Remediation Design under Uncertainty

    Get PDF
    Groundwater resources are vital for sustainable economic and demographic developments. Reliable prediction of groundwater head and contaminant transport is necessary for sustainable management of the groundwater resources. However, the groundwater simulation models are subjected to uncertainty in their predictions. The goals of this research are to: (1) quantify the uncertainty in the groundwater model predictions and (2) investigate the impact of the quantified uncertainty on the aquifer remediation designs. To pursue the first goal, this study generalizes the Bayesian model averaging (BMA) method and introduces the hierarchical Bayesian model averaging (HBMA) method that segregates and prioritizes sources of uncertainty in a hierarchical structure and conduct BMA for saltwater intrusion prediction. A BMA tree of models is developed to understand the impact of individual sources of uncertainty and uncertainty propagation on model predictions. The uncertainty analysis using HBMA leads to finding the best modeling proposition and to calculating the relative and absolute model weights. To pursue the second goal of the study, the chance-constrained (CC) programming is proposed to deal with the uncertainty in the remediation design. Prior studies of CC programming for the groundwater remediation designs are limited to considering parameter estimation uncertainty. This study combines the CC programming with the BMA and HBMA methods and proposes the BMA-CC framework and the HBMA-CC framework to also include the model structure uncertainty in the CC programming. The results show that the prediction variances from the parameter estimation uncertainty are much smaller than those from the model structure uncertainty. Ignoring the model structure uncertainty in the remediation design may lead to overestimating the design reliability, which can cause design failure
    • …
    corecore