33 research outputs found

    CryptoMaze: Atomic Off-Chain Payments in Payment Channel Network

    Get PDF
    Payment protocols developed to realize off-chain transactions in Payment channel network (PCN) assumes the underlying routing algorithm transfers the payment via a single path. However, a path may not have sufficient capacity to route a transaction. It is inevitable to split the payment across multiple paths. If we run independent instances of the protocol on each path, the execution may fail in some of the paths, leading to partial transfer of funds. A payer has to reattempt the entire process for the residual amount. We propose a secure and privacy-preserving payment protocol, CryptoMaze. Instead of independent paths, the funds are transferred from sender to receiver across several payment channels responsible for routing, in a breadth-first fashion. Payments are resolved faster at reduced setup cost, compared to existing state-of-the-art. Correlation among the partial payments is captured, guaranteeing atomicity. Further, two party ECDSA signature is used for establishing scriptless locks among parties involved in the payment. It reduces space overhead by leveraging on core Bitcoin scripts. We provide a formal model in the Universal Composability framework and state the privacy goals achieved by CryptoMaze. We compare the performance of our protocol with the existing single path based payment protocol, Multi-hop HTLC, applied iteratively on one path at a time on several instances. It is observed that CryptoMaze requires less communication overhead and low execution time, demonstrating efficiency and scalability.Comment: 30 pages, 9 figures, 1 tabl

    Distributed Ledger Technologies and Blockchain systems: Digital Currency, Smart Contract and other applications

    Get PDF
    Questo studio si propone di analizzare il complesso delle novità introdotte al sistema dei pagamenti e al trasferimento di diritti da Distributed Ledger e Blockchain, in una prospettiva che tenga conto delle applicazioni di mercato di queste innovazioni tecnologiche e della tutela giuridica degli interessi economici e delle posizioni soggettive che ne derivano. In particolar modo, l’opera vuole stimolare la discussione volta alla definizione di un quadro normativo socialmente adeguato che sostenga l’efficienza di questi strumenti in un’ottica di scambio economico globalizzato.This essay aims at analyzing the ensemble of innovation introduced by Distributed Ledger and Blockchain to the payment system and the transfer of rights, in a perspective considering the market applications of these new technologies and the legal protection of deriving economics interests and individual rights. Purposely, our dissertation aspires to encourage the discussion for the definition of a socially adequate legal framework sustaining the efficiency of these instruments in a global exchange perspective

    Security and Privacy Preservation in Mobile Crowdsensing

    Get PDF
    Mobile crowdsensing (MCS) is a compelling paradigm that enables a crowd of individuals to cooperatively collect and share data to measure phenomena or record events of common interest using their mobile devices. Pairing with inherent mobility and intelligence, mobile users can collect, produce and upload large amounts of data to service providers based on crowdsensing tasks released by customers, ranging from general information, such as temperature, air quality and traffic condition, to more specialized data, such as recommended places, health condition and voting intentions. Compared with traditional sensor networks, MCS can support large-scale sensing applications, improve sensing data trustworthiness and reduce the cost on deploying expensive hardware or software to acquire high-quality data. Despite the appealing benefits, however, MCS is also confronted with a variety of security and privacy threats, which would impede its rapid development. Due to their own incentives and vulnerabilities of service providers, data security and user privacy are being put at risk. The corruption of sensing reports may directly affect crowdsensing results, and thereby mislead customers to make irrational decisions. Moreover, the content of crowdsensing tasks may expose the intention of customers, and the sensing reports might inadvertently reveal sensitive information about mobile users. Data encryption and anonymization techniques can provide straightforward solutions for data security and user privacy, but there are several issues, which are of significantly importance to make MCS practical. First of all, to enhance data trustworthiness, service providers need to recruit mobile users based on their personal information, such as preferences, mobility pattern and reputation, resulting in the privacy exposure to service providers. Secondly, it is inevitable to have replicate data in crowdsensing reports, which may possess large communication bandwidth, but traditional data encryption makes replicate data detection and deletion challenging. Thirdly, crowdsensed data analysis is essential to generate crowdsensing reports in MCS, but the correctness of crowdsensing results in the absence of malicious mobile users and service providers become a huge concern for customers. Finally yet importantly, even if user privacy is preserved during task allocation and data collection, it may still be exposed during reward distribution. It further discourage mobile users from task participation. In this thesis, we explore the approaches to resolve these challenges in MCS. Based on the architecture of MCS, we conduct our research with the focus on security and privacy protection without sacrificing data quality and users' enthusiasm. Specifically, the main contributions are, i) to enable privacy preservation and task allocation, we propose SPOON, a strong privacy-preserving mobile crowdsensing scheme supporting accurate task allocation. In SPOON, the service provider recruits mobile users based on their locations, and selects proper sensing reports according to their trust levels without invading user privacy. By utilizing the blind signature, sensing tasks are protected and reports are anonymized. In addition, a privacy-preserving credit management mechanism is introduced to achieve decentralized trust management and secure credit proof for mobile users; ii) to improve communication efficiency while guaranteeing data confidentiality, we propose a fog-assisted secure data deduplication scheme, in which a BLS-oblivious pseudo-random function is developed to enable fog nodes to detect and delete replicate data in sensing reports without exposing the content of reports. Considering the privacy leakages of mobile users who report the same data, the blind signature is utilized to hide users' identities, and chameleon hash function is leveraged to achieve contribution claim and reward retrieval for anonymous greedy mobile users; iii) to achieve data statistics with privacy preservation, we propose a privacy-preserving data statistics scheme to achieve end-to-end security and integrity protection, while enabling the aggregation of the collected data from multiple sources. The correctness verification is supported to prevent the corruption of the aggregate results during data transmission based on the homomorphic authenticator and the proxy re-signature. A privacy-preserving verifiable linear statistics mechanism is developed to realize the linear aggregation of multiple crowdsensed data from a same device and the verification on the correctness of aggregate results; and iv) to encourage mobile users to participating in sensing tasks, we propose a dual-anonymous reward distribution scheme to offer the incentive for mobile users and privacy protection for both customers and mobile users in MCS. Based on the dividable cash, a new reward sharing incentive mechanism is developed to encourage mobile users to participating in sensing tasks, and the randomization technique is leveraged to protect the identities of customers and mobile users during reward claim, distribution and deposit

    Functional encryption based approaches for practical privacy-preserving machine learning

    Get PDF
    Machine learning (ML) is increasingly being used in a wide variety of application domains. However, deploying ML solutions poses a significant challenge because of increasing privacy concerns, and requirements imposed by privacy-related regulations. To tackle serious privacy concerns in ML-based applications, significant recent research efforts have focused on developing privacy-preserving ML (PPML) approaches by integrating into ML pipeline existing anonymization mechanisms or emerging privacy protection approaches such as differential privacy, secure computation, and other architectural frameworks. While promising, existing secure computation based approaches, however, have significant computational efficiency issues and hence, are not practical. In this dissertation, we address several challenges related to PPML and propose practical secure computation based approaches to solve them. We consider both two-tier cloud-based and three-tier hybrid cloud-edge based PPML architectures and address both emerging deep learning models and federated learning approaches. The proposed approaches enable us to outsource data or update a locally trained model in a privacy-preserving manner by employing computation over encrypted datasets or local models. Our proposed secure computation solutions are based on functional encryption (FE) techniques. Evaluation of the proposed approaches shows that they are efficient and more practical than existing approaches, and provide strong privacy guarantees. We also address issues related to the trustworthiness of various entities within the proposed PPML infrastructures. This includes a third-party authority (TPA) which plays a critical role in the proposed FE-based PPML solutions, and cloud service providers. To ensure that such entities can be trusted, we propose a transparency and accountability framework using blockchain. We show that the proposed transparency framework is effective and guarantees security properties. Experimental evaluation shows that the proposed framework is efficient

    Money & Trust in Digital Society, Bitcoin and Stablecoins in ML enabled Metaverse Telecollaboration

    Full text link
    We present a state of the art and positioning book, about Digital society tools, namely; Web3, Bitcoin, Metaverse, AI/ML, accessibility, safeguarding and telecollaboration. A high level overview of Web3 technologies leads to a description of blockchain, and the Bitcoin network is specifically selected for detailed examination. Suitable components of the extended Bitcoin ecosystem are described in more depth. Other mechanisms for native digital value transfer are described, with a focus on `money'. Metaverse technology is over-viewed, primarily from the perspective of Bitcoin and extended reality. Bitcoin is selected as the best contender for value transfer in metaverses because of it's free and open source nature, and network effect. Challenges and risks of this approach are identified. A cloud deployable virtual machine based technology stack deployment guide with a focus on cybersecurity best practice can be downloaded from GitHub to experiment with the technologies. This deployable lab is designed to inform development of secure value transaction, for small and medium sized companies

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Opportunities and Challenges of DLT (Blockchain) in Mobility and Logistics

    Get PDF
    This report presents the economic potential, legal framework, and technical foundations required to understand distributed ledger (DL) / blockchain technology and llustrates the opportunities and challenges they present, especially in the mobility and logistics sectors. It was compiled by the blockchain laboratory at Fraunhofer FIT on behalf of the German Federal Ministry of Transport and Digital Infrastructure (BMVI). Its intended audience comprises young companies seeking, for example, a legal assessment of data protection issues related to DL and blockchain technologies, decisionmakers in the private sector wishing concrete examples to help them understand how this technology can impact existing and emerging markets and which measures might be sensible from a business perspective, public policymakers and politicians wishing to familiarize themselves with this topic in order to take a position, particularly in the mobility and logistics sectors, and members of the general public interested in the technology and its potential. The report does not specifically address those with a purely academic or scientific interest in these topics, although parts of it definitely reflect the current state of academic discussion

    SECURITY CHALLENGES IN CLOUD COMPUTING

    Get PDF

    Democracy Enhancing Technologies: Toward deployable and incoercible E2E elections

    Get PDF
    End-to-end verifiable election systems (E2E systems) provide a provably correct tally while maintaining the secrecy of each voter's ballot, even if the voter is complicit in demonstrating how they voted. Providing voter incoercibility is one of the main challenges of designing E2E systems, particularly in the case of internet voting. A second challenge is building deployable, human-voteable E2E systems that conform to election laws and conventions. This dissertation examines deployability, coercion-resistance, and their intersection in election systems. In the course of this study, we introduce three new election systems, (Scantegrity, Eperio, and Selections), report on two real-world elections using E2E systems (Punchscan and Scantegrity), and study incoercibility issues in one deployed system (Punchscan). In addition, we propose and study new practical primitives for random beacons, secret printing, and panic passwords. These are tools that can be used in an election to, respectively, generate publicly verifiable random numbers, distribute the printing of secrets between non-colluding printers, and to covertly signal duress during authentication. While developed to solve specific problems in deployable and incoercible E2E systems, these techniques may be of independent interest

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore