3,662 research outputs found

    Facilitating the Exploitation of Linked Open Statistical Data: JSON-QB API Requirements and Design Criteria

    Get PDF
    Recently, many organizations have opened up their data for others to reuse. A major part of these data concern statistics such as demographic and social indicators. Linked Data is a promising paradigm for opening data because it facilitates data integration on the Web. Re- cently, a growing number of organizations adopted linked data paradigm and provided Linked Open Statistical Data (LOSD). These data can be exploited to create added value services and applications that require integrated data from multiple sources. In this paper, we suggest that in order to unleash the full potential of LOSD we need to facilitate the interaction with LOSD and hide most of the complexity. Moreover, we describe the requirements and design criteria of a JSON-QB API that (i) facilitates the development of LOSD tools through a style of interaction familiar to web developers and (ii) offers a uniform way to access LOSD. A proof of concept implementation of the JSON-QB API demonstrates part of the proposed functionality

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Adding value to Linked Open Data using a multidimensional model approach based on the RDF Data Cube vocabulary

    Get PDF
    Most organisations using Open Data currently focus on data processing and analysis. However, although Open Data may be available online, these data are generally of poor quality, thus discouraging others from contributing to and reusing them. This paper describes an approach to publish statistical data from public repositories by using Semantic Web standards published by the W3C, such as RDF and SPARQL, in order to facilitate the analysis of multidimensional models. We have defined a framework based on the entire lifecycle of data publication including a novel step of Linked Open Data assessment and the use of external repositories as knowledge base for data enrichment. As a result, users are able to interact with the data generated according to the RDF Data Cube vocabulary, which makes it possible for general users to avoid the complexity of SPARQL when analysing data. The use case was applied to the Barcelona Open Data platform and revealed the benefits of the application of our approach, such as helping in the decision-making process.This work was supported in part by the Spanish Ministry of Science, Innovation and Universities through the Project ECLIPSE-UA under grant RTI2018-094283-B-C32

    Graph BI & analytics: current state and future challenges

    Get PDF
    In an increasingly competitive market, making well-informed decisions requires the analysis of a wide range of heterogeneous, large and complex data. This paper focuses on the emerging field of graph warehousing. Graphs are widespread structures that yield a great expressive power. They are used for modeling highly complex and interconnected domains, and efficiently solving emerging big data application. This paper presents the current status and open challenges of graph BI and analytics, and motivates the need for new warehousing frameworks aware of the topological nature of graphs. We survey the topics of graph modeling, management, processing and analysis in graph warehouses. Then we conclude by discussing future research directions and positioning them within a unified architecture of a graph BI and analytics framework.Peer ReviewedPostprint (author's final draft

    On Big Data guided Unconventional Digital Ecosystems and their Knowledge Management

    Get PDF
    Establishing the reservoir connections is paramount in exploration and exploitation of unconventional petroleum systems and their reservoirs. In Big Data scale, multiple petroleum systems hold volumes and varieties of data sources. The connectivity between petroleum reservoirs and their existence in a single petroleum ecosystem is often ambiguously interpreted. They are heterogeneous and unstructured in multiple domains. They need better data integration methods to interpret the interplay between elements and processes of petroleum systems. Largescale infrastructure is needed to build data relationships between different petroleum systems. The purpose of the research is to establish the connectivity between petroleum systems through resource data management and visual analytics. We articulate a Design Science Information System (DSIS) approach, bringing various artefacts together from multiple domains of petroleum provinces. The DSIS emerges as a knowledge-based digital ecosystem innovation, justifying its need, connecting geographically controlled petroleum systems and building knowledge of oil and gas prospects

    Big Data guided Digital Petroleum Ecosystems for Visual Analytics and Knowledge Management

    Get PDF
    The North West Shelf (NWS) interpreted as a Total Petroleum System (TPS), is Super Westralian Basin with active onshore and offshore basins through which shelf, - slope and deep-oceanic geological events are construed. In addition to their data associativity, TPS emerges with geographic connectivity through phenomena of digital petroleum ecosystem. The super basin has a multitude of sub-basins, each basin is associated with several petroleum systems and each system comprised of multiple oil and gas fields with either known or unknown areal extents. Such hierarchical ontologies make connections between attribute relationships of diverse petroleum systems. Besides, NWS has a scope of storing volumes of instances in a data-warehousing environment to analyse and motivate to create new business opportunities. Furthermore, the big exploration data, characterized as heterogeneous and multidimensional, can complicate the data integration process, precluding interpretation of data views, drawn from TPS metadata in new knowledge domains. The research objective is to develop an integrated framework that can unify the exploration and other interrelated multidisciplinary data into a holistic TPS metadata for visualization and valued interpretation. Petroleum digital ecosystem is prototyped as a digital oil field solution, with multitude of big data tools. Big data associated with elements and processes of petroleum systems are examined using prototype solutions. With conceptual framework of Digital Petroleum Ecosystems and Technologies (DPEST), we manage the interconnectivity between diverse petroleum systems and their linked basins. The ontology-based data warehousing and mining articulations ascertain the collaboration through data artefacts, the coexistence between different petroleum systems and their linked oil and gas fields that benefit the explorers. The connectivity between systems further facilitates us with presentable exploration data views, improvising visualization and interpretation. The metadata with meta-knowledge in diverse knowledge domains of digital petroleum ecosystems ensures the quality of untapped reservoirs and their associativity between Westralian basins

    Using Semantic Web technologies in the development of data warehouses: A systematic mapping

    Get PDF
    The exploration and use of Semantic Web technologies have attracted considerable attention from researchers examining data warehouse (DW) development. However, the impact of this research and the maturity level of its results are still unclear. The objective of this study is to examine recently published research articles that take into account the use of Semantic Web technologies in the DW arena with the intention of summarizing their results, classifying their contributions to the field according to publication type, evaluating the maturity level of the results, and identifying future research challenges. Three main conclusions were derived from this study: (a) there is a major technological gap that inhibits the wide adoption of Semantic Web technologies in the business domain;(b) there is limited evidence that the results of the analyzed studies are applicable and transferable to industrial use; and (c) interest in researching the relationship between DWs and Semantic Web has decreased because new paradigms, such as linked open data, have attracted the interest of researchers.This study was supported by the Universidad de La Frontera, Chile, PROY. DI15-0020. Universidad de la Frontera, Chile, Grant Numbers: DI15-0020 and DI17-0043
    corecore