1,899 research outputs found

    Challenges of Precision Assembly with a Miniaturized Robot

    Full text link

    Miniaturized modular manipulator design for high precision assembly and manipulation tasks

    Get PDF
    In this paper, design and control issues for the development of miniaturized manipulators which are aimed to be used in high precision assembly and manipulation tasks are presented. The developed manipulators are size adapted devices, miniaturized versions of conventional robots based on well-known kinematic structures. 3 degrees of freedom (DOF) delta robot and a 2 DOF pantograph mechanism enhanced with a rotational axis at the tip and a Z axis actuating the whole mechanism are given as examples of study. These parallel mechanisms are designed and developed to be used in modular assembly systems for the realization of high precision assembly and manipulation tasks. In that sense, modularity is addressed as an important design consideration. The design procedures are given in details in order to provide solutions for miniaturization and experimental results are given to show the achieved performances

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Design of a miniaturized work-cell for micro-manipulation

    Get PDF
    The paper describes the design and development of a miniaturised workcell devoted to the robotized micro manipulation and assembly of extremely small components, jointly carried out by the University of Brescia, University of Bergamo, University of Ancona and the Institute of Industrial Technologies and Automation of the Italian National Research Council in the framework of the project PRIN2009 MM&A, funded by MIUR. Besides analyzing theoretical and practical aspects related to the design of the work cell components (positioning and orienting devices, grippers, vision and control systems), an automated test bed for the assembly of micro pieces whose typical dimension belongs to the submillimeter scale range has been implemented. The perspective is to contribute to the realization of general automatic production systems at the moment absent for objects of these dimensions

    Design of a miniaturized work-cell for micro-manipulation

    Get PDF
    The paper describes the design and development of a miniaturised workcell devoted to the robotized micro manipulation and assembly of extremely small components, jointly carried out by the University of Brescia, University of Bergamo, University of Ancona and the Institute of Industrial Technologies and Automation of the Italian National Research Council in the framework of the project PRIN2009 MM&A, funded by MIUR. Besides analyzing theoretical and practical aspects related to the design of the work cell components (positioning and orienting devices, grippers, vision and control systems), an automated test bed for the assembly of micro pieces whose typical dimension belongs to the submillimeter scale range has been implemented. The perspective is to contribute to the realization of general automatic production systems at the moment absent for objects of these dimensions

    TUT-microfactory – a small-size, modular and sustainable production system

    Get PDF
    Part of: Seliger, Günther (Ed.): Innovative solutions : proceedings / 11th Global Conference on Sustainable Manufacturing, Berlin, Germany, 23rd - 25th September, 2013. - Berlin: Universitätsverlag der TU Berlin, 2013. - ISBN 978-3-7983-2609-5 (online). - http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-40276. - pp. 78-83.Micro and desktop factories are small size production systems suitable for fabricating and assembling small parts and products. The development originates in the early 1990’s Japan, where small machines were designed in order to save resources when producing small products. This paper introduces the modular TUTMicrofactory concept, developed at Tampere University of Technology during the past 15 years, and its applications. The sustainability of miniaturized production systems is discussed from three perspectives – environmental, economic and social. The main conclusion is that micro and desktop factories can remarkably enhance the sustainability of manufacturing from all these three perspectives

    A Miniature Robot for Isolating and Tracking Neurons in Extracellular Cortical Recordings

    Get PDF
    This paper presents a miniature robot device and control algorithm that can autonomously position electrodes in cortical tissue for isolation and tracking of extracellular signals of individual neurons. Autonomous electrode positioning can significantly enhance the efficiency and quality of acute electrophysiolgical experiments aimed at basic understanding of the nervous system. Future miniaturized systems of this sort could also overcome some of the inherent difficulties in estabilishing long-lasting neural interfaces that are needed for practical realization of neural prostheses. The paper describes the robot's design and summarizes the overall structure of the control system that governs the electrode positioning process. We present a new sequential clustering algorithm that is key to improving our system's performance, and which may have other applications in robotics. Experimental results in macaque cortex demonstrate the validity of our approach

    A Novel Fiber Jamming Theory and Experimental Verification

    Get PDF
    This thesis developed a novel theory of fiber jamming and experimentally verified it. The theory relates the performance, which is the ratio between the stiff and soft states of a fiber jamming chamber, to three relative design parameters: the ratio of the wall thickness to the membrane inner diameter, the ratio of the fiber diameter to membrane inner diameter, and the number of fibers. These three parameters, when held constant across different chamber sizes, hold the performance constant. To test the theory, three different types of fiber jamming chambers were built in three different sizes. Each chamber was set up as a cantilever beam and deflected 10mm in both the un-jammed (soft) and jammed (stiff) states. When the three design parameters were held constant, the performance of the chamber was consistent within 10\%. In contrast, when the parameters were altered, there was a statistically significant p3˘c.0001p \u3c .0001 and noticeable effect on chamber performance. These two results can be used in tandem to design miniaturized fiber jamming chambers. These results also have a direct application in soft robots designed for minimally invasive surgery
    corecore