7,965 research outputs found

    Noncommutative Coordinates Invariant under Rotations and Lorentz Transformations

    Get PDF
    Dynamics with noncommutative coordinates invariant under three dimensional rotations or, if time is included, under Lorentz transformations is developed. These coordinates turn out to be the boost operators in SO(1,3) or in SO(2,3) respectively. The noncommutativity is governed by a mass parameter MM. The principal results are: (i) a modification of the Heisenberg algebra for distances smaller than 1/M, (ii) a lower limit, 1/M, on the localizability of wave packets, (iii) discrete eigenvalues of coordinate operator in timelike directions, and (iv) an upper limit, MM, on the mass for which free field equations have solutions. Possible restrictions on small black holes is discussed.Comment: 14 pages; LaTex using JHEP3.cl

    Drive systems for operation on deep-sea ROVs

    Get PDF
    Power systems for thruster actuators and other auxiliaries employed on work-class deep-sea ROVs subject to 300bar ambient pressures, are considered. Emphasis on 3×3 matrix converters for thrusters and 3×2 matrix converters for system auxiliaries, is given, along with experimental results showing operation during pressure cycling consistent with typical operational duties

    Position-dependent noncommutativity in quantum mechanics

    Full text link
    The model of the position-dependent noncommutativety in quantum mechanics is proposed. We start with a given commutation relations between the operators of coordinates [x^{i},x^{j}]=\omega^{ij}(x), and construct the complete algebra of commutation relations, including the operators of momenta. The constructed algebra is a deformation of a standard Heisenberg algebra and obey the Jacobi identity. The key point of our construction is a proposed first-order Lagrangian, which after quantization reproduces the desired commutation relations. Also we study the possibility to localize the noncommutativety.Comment: published version, references adde

    Interplay between curvature and Planck-scale effects in astrophysics and cosmology

    Full text link
    Several recent studies have considered the implications for astrophysics and cosmology of some possible nonclassical properties of spacetime at the Planck scale. The new effects, such as a Planck-scale-modified energy-momentum (dispersion) relation, are often inferred from the analysis of some quantum versions of Minkowski spacetime, and therefore the relevant estimates depend heavily on the assumption that there could not be significant interplay between Planck-scale and curvature effects. We here scrutinize this assumption, using as guidance a quantum version of de Sitter spacetime with known Inonu-Wigner contraction to a quantum Minkowski spacetime. And we show that, contrary to common (but unsupported) beliefs, the interplay between Planck-scale and curvature effects can be significant. Within our illustrative example, in the Minkowski limit the quantum-geometry deformation parameter is indeed given by the Planck scale, while in the de Sitter picture the parameter of quantization of geometry depends both on the Planck scale and the curvature scalar. For the much-studied case of Planck-scale effects that intervene in the observation of gamma-ray bursts we can estimate the implications of "quantum spacetime curvature" within robust simplifying assumptions. For cosmology at the present stage of the development of the relevant mathematics one cannot go beyond semiheuristic reasoning, and we here propose a candidate approximate description of a quantum FRW geometry, obtained by patching together pieces (with different spacetime curvature) of our quantum de Sitter. This semiheuristic picture, in spite of its limitations, provides rather robust evidence that in the early Universe the interplay between Planck-scale and curvature effects could have been particularly significant.Comment: 26 pages
    corecore