68,639 research outputs found

    Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education

    Full text link
    This paper presents a novel framework, Artificial Intelligence-Enabled Intelligent Assistant (AIIA), for personalized and adaptive learning in higher education. The AIIA system leverages advanced AI and Natural Language Processing (NLP) techniques to create an interactive and engaging learning platform. This platform is engineered to reduce cognitive load on learners by providing easy access to information, facilitating knowledge assessment, and delivering personalized learning support tailored to individual needs and learning styles. The AIIA's capabilities include understanding and responding to student inquiries, generating quizzes and flashcards, and offering personalized learning pathways. The research findings have the potential to significantly impact the design, implementation, and evaluation of AI-enabled Virtual Teaching Assistants (VTAs) in higher education, informing the development of innovative educational tools that can enhance student learning outcomes, engagement, and satisfaction. The paper presents the methodology, system architecture, intelligent services, and integration with Learning Management Systems (LMSs) while discussing the challenges, limitations, and future directions for the development of AI-enabled intelligent assistants in education.Comment: 29 pages, 10 figures, 9659 word

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    Towards engineering ontologies for cognitive profiling of agents on the semantic web

    Get PDF
    Research shows that most agent-based collaborations suffer from lack of flexibility. This is due to the fact that most agent-based applications assume pre-defined knowledge of agents’ capabilities and/or neglect basic cognitive and interactional requirements in multi-agent collaboration. The highlight of this paper is that it brings cognitive models (inspired from cognitive sciences and HCI) proposing architectural and knowledge-based requirements for agents to structure ontological models for cognitive profiling in order to increase cognitive awareness between themselves, which in turn promotes flexibility, reusability and predictability of agent behavior; thus contributing towards minimizing cognitive overload incurred on humans. The semantic web is used as an action mediating space, where shared knowledge base in the form of ontological models provides affordances for improving cognitive awareness

    In loco intellegentia: Human factors for the future European train driver

    Get PDF
    The European Rail Traffic Management System (ERTMS) represents a step change in technology for rail operations in Europe. It comprises track-to-train communications and intelligent on-board systems providing an unprecedented degree of support to the train driver. ERTMS is designed to improve safety, capacity and performance, as well as facilitating interoperability across the European rail network. In many ways, particularly from the human factors perspective, ERTMS has parallels with automation concepts in the aviation and automotive industries. Lessons learned from both these industries are that such a technology raises a number of human factors issues associated with train driving and operations. The interaction amongst intelligent agents throughout the system must be effectively coordinated to ensure that the strategic benefits of ERTMS are realised. This paper discusses the psychology behind some of these key issues, such as Mental Workload (MWL), interface design, user information requirements, transitions and migration and communications. Relevant experience in aviation and vehicle automation is drawn upon to give an overview of the human factors challenges facing the UK rail industry in implementing ERTMS technology. By anticipating and defining these challenges before the technology is implemented, it is hoped that a proactive and structured programme of research can be planned to meet them

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle

    Get PDF
    Partially automated vehicles present interface design challenges in ensuring the driver remains alert should the vehicle need to hand back control at short notice, but without exposing the driver to cognitive overload. To date, little is known about driver expectations of partial driving automation and whether this affects the information they require inside the vehicle. Twenty-five participants were presented with five partially automated driving events in a driving simulator. After each event, a semi-structured interview was conducted. The interview data was coded and analysed using grounded theory. From the results, two groupings of driver expectations were identified: High Information Preference (HIP) and Low Information Preference (LIP) drivers; between these two groups the information preferences differed. LIP drivers did not want detailed information about the vehicle presented to them, but the definition of partial automation means that this kind of information is required for safe use. Hence, the results suggest careful thought as to how information is presented to them is required in order for LIP drivers to safely using partial driving automation. Conversely, HIP drivers wanted detailed information about the system's status and driving and were found to be more willing to work with the partial automation and its current limitations. It was evident that the drivers' expectations of the partial automation capability differed, and this affected their information preferences. Hence this study suggests that HMI designers must account for these differing expectations and preferences to create a safe, usable system that works for everyone. [Abstract copyright: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Towards the Safety of Human-in-the-Loop Robotics: Challenges and Opportunities for Safety Assurance of Robotic Co-Workers

    Get PDF
    The success of the human-robot co-worker team in a flexible manufacturing environment where robots learn from demonstration heavily relies on the correct and safe operation of the robot. How this can be achieved is a challenge that requires addressing both technical as well as human-centric research questions. In this paper we discuss the state of the art in safety assurance, existing as well as emerging standards in this area, and the need for new approaches to safety assurance in the context of learning machines. We then focus on robotic learning from demonstration, the challenges these techniques pose to safety assurance and indicate opportunities to integrate safety considerations into algorithms "by design". Finally, from a human-centric perspective, we stipulate that, to achieve high levels of safety and ultimately trust, the robotic co-worker must meet the innate expectations of the humans it works with. It is our aim to stimulate a discussion focused on the safety aspects of human-in-the-loop robotics, and to foster multidisciplinary collaboration to address the research challenges identified
    corecore